Nanotechnology

A swift expanding trend of extracellular vesicles in spinal cord injury research: a bibliometric analysis | Journal of Nanobiotechnology


  • Giger RJ, Hollis ER, Tuszynski MH. Guidance molecules in axon regeneration. Cold Spring Harbor Perspect Biol. 2010;2:a001867–a001867.

    Article 

    Google Scholar
     

  • Qu QR, Tang LY, Liu Q, Long YY, Wu X, Xu M, Qi F, Zhang H, Ai K, Zhou L. Proteomic analysis of the sphincter in a neurogenic bladder caused by T10 spinal cord injury. J Integr Neurosci. 2022;21:147.

    Article 
    PubMed 

    Google Scholar
     

  • Li JA, Shi MP, Cong L, Gu MY, Chen YH, Wang SY, Li ZH, Zan CF, Wei WF. Circulating exosomal lncRNA contributes to the pathogenesis of spinal cord injury in rats. Neural Regener Res. 2023;18:889–94.

    Article 

    Google Scholar
     

  • Liu WZ, Ma ZJ, Li JR, Kang XW. Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther. 2021;12:1–15.

    Article 

    Google Scholar
     

  • Tang BL. The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy—a perspective on cell biological mechanisms. Rev Neurosci. 2017;28:725–38.

    Article 
    PubMed 

    Google Scholar
     

  • Joshua M. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81:229–48.

    Article 

    Google Scholar
     

  • Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76:319–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest. 2012;122:3824–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradbury EJ, Moon LDF, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shumsky JS, Tobias CA, Tumolo M, Long WD, Giszter SF, Murray M. Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Exp Neurol. 2003;184:114–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ide C, Nakai Y, Nakano N, Seo TB, Yamada Y, Endo K, Noda T, Saito F, Suzuki Y, Fukushima M, Nakatani T. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res. 2010;1332:32–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Wang Y, Lv Q, Gao J, Hu L, He Z. MicroRNA-21 overexpression promotes the neuroprotective efficacy of mesenchymal stem cells for treatment of intracerebral hemorrhage. Front Neurol. 2018;9:931.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chopp M, Zhang XH, Li Y, Wang L, Chen JL, Lu DY, Lu M, Rosenblum M. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. NeuroReport. 2000;11:3001–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv LW, Sheng CH, Zhou YS. Extracellular vesicles as a novel therapeutic tool for cell-free regenerative medicine in oral rehabilitation. J Oral Rehabil. 2020;47:29–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun G, Li G, Li D, Huang W, Zhang R, Zhang H, Duan Y, Wang B. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C Mater Biol Appl. 2018;89:194–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamichhane TN, Sokic S, Schardt JS, Raiker RS, Lin JW, Jay SM. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2015;21:45–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater. 2022;139:43–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vandergriff A, Huang K, Shen D, Hu S, Hensley MT, Caranasos TG, Qian L, Cheng K. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics. 2018;8:1869–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Andaloussi S, Maeger I, Breakefield XO, Wood MJA. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:348–58.

    Article 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E, Jose Alcaraz M, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanez-Mo M, Siljander PRM, Andreu Z, Zavec AB, Borras FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066–27066.

    Article 
    PubMed 

    Google Scholar
     

  • Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, Yang Z, Chen Y, Li J, Ma T, et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7: e008737.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim AGE, Cheng K, Marban E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014;2:606–19.

    Article 
    CAS 

    Google Scholar
     

  • Konoshenko M, Sagaradze G, Orlova E, Shtam T, Proskura K, Kamyshinsky R, Yunusova N, Alexandrova A, Efimenko A, Tamkovich S. Total blood exosomes in breast cancer: potential role in crucial steps of tumorigenesis. Int J Mol Sci. 2020;21:7341.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng W, Wen Z, Chen H, Duan Y. Exosomes as carriers for drug delivery in cancer therapy. Pharm Res. 2023;40(4):873–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai X, Chen K, Yang H, Li B, Zhou TJK, Wang HJ, Zhou HP, Chen SF, Zhou XY, Wei XZ, et al. Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. J Nanobiotechnol. 2021;19:1–20.

    Article 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:640.

    Article 

    Google Scholar
     

  • Seim RF, Willis ML, Wallet SM, Maile R, Coleman LG. Extracellular vesicles as regulators of immune function in traumatic injuries and sepsis. Shock. 2023;59:180–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin LY, Du LM. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol. 2018;326:24–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi K, Gu Y, Tang J, Chen H, Xu Y, Wu L, Cai F, Deng L, Yang H, Shi Q, et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat Commun. 2020;11:4504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avcu G, Bal ZS, Duyu M, Akkus E, Karapinar B, Vardar F. Thanks to trauma A delayed diagnosis of pott disease. Pediatr Emerg Care. 2015;31:E17–8.

    Article 
    PubMed 

    Google Scholar
     

  • Ekinci S, Agilli M, Ersen O, Ekinci GH. Letter to the editor regarding analysis of changing paradigms of management in 179 patients with spinal tuberculosis during a 12-year period and proposal of a new management algorithm. World Neurosurg. 2015;84:2072–2072.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao J, Yu G, Cai M, Lei X, Yang Y, Wang Q, Zhai X. Bibliometric analysis of global scientific activity on umbilical cord mesenchymal stem cells: a swiftly expanding and shifting focus. Stem Cell Res Ther. 2018;9:1–9.

    Article 

    Google Scholar
     

  • Xu X, Chen X, Jia F, Brown S, Gong Y, Xu Y. Supply chain finance: a systematic literature review and bibliometric analysis. Int J Prod Econ. 2018;204:160–73.

    Article 

    Google Scholar
     

  • Hirsch JE. Does the h index have predictive power? Proc Natl Acad Sci USA. 2007;104:19193–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. J Chronic Dis. 2001;54:979–85.

    CAS 

    Google Scholar
     

  • Jia Z-J, Hong B, Chen D-M, Huang Q-H, Yang Z-G, Yin C, Deng X-Q, Liu J-M. China’s growing contribution to global intracranial aneurysm research (1991–2012): a bibliometric study. PLoS ONE. 2014;9: e91594.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523–38.

    Article 
    PubMed 

    Google Scholar
     

  • Moral-Munoz JA, Herrera-Viedma E, Santisteban-Espejo A, Cobo MJ. Software tools for conducting bibliometric analysis in science: an up-to-date review. Profesional de la Informacion. 2020;29:4.


    Google Scholar
     

  • Van Eck NJ, Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics. 2017;111:1053–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen CM. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol. 2006;57:359–77.

    Article 

    Google Scholar
     

  • Chen C, Hu Z, Liu S, Tseng H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther. 2012;12:593–608.

    Article 
    PubMed 

    Google Scholar
     

  • Khalil GM, Gotway Crawford CA. A bibliometric analysis of US-based research on the behavioral risk factor surveillance system. Am J Prev Med. 2015;48:50–7.

    Article 
    PubMed 

    Google Scholar
     

  • Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG, Chopp M. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31:2737–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Rong Y, Wang J, Zhou Z, Ge X, Ji C, Jiang D, Gong F, Li L, Chen J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflamm. 2020;17:1–22.

    Article 

    Google Scholar
     

  • Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature. 2009;462:651–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tom VJ, Steinmetz MP, Miller JH, Doller CM, Silver J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J Neurosci. 2004;24:6531–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Rivero Vaccari JP, Brand F 3rd, Adamczak S, Lee SW, Perez-Barcena J, Wang MY, Bullock MR, Dietrich WD, Keane RW. Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem. 2016;136(Suppl 1):39–48.

    Article 
    PubMed 

    Google Scholar
     

  • Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano. 2019;13:10015–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang JH, Yin XM, Xu Y, Xu CC, Lin X, Ye FB, Cao Y, Lin FY. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma. 2017;34:3388–96.

    Article 
    PubMed 

    Google Scholar
     

  • Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, Hutson T, Danzi MC, Perry RB, Santos CXC, et al. Publisher Correction: Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol. 2018;20:1098.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Wang L, Cong M, Shen M, He Q, Ding F, Shi H. Extracellular vesicles from skin precursor-derived Schwann cells promote axonal outgrowth and regeneration of motoneurons via Akt/mTOR/p70S6K pathway. Ann Transl Med. 2020;8:1640.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verkade P, Verkleij AJ, Gispen WH, Oestreicher AB. Ultrastructural evidence for the lack of co-transport of B-50/GAP-43 and calmodulin in myelinated axons of the regenerating rat sciatic nerve. J Neurocytol. 1996;25:583–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caldero J, Casanovas A, Sorribas A, Esquerda JE. Calcitonin gene-related peptide in rat spinal cord motoneurons: subcellular distribution and changes induced by axotomy. Neuroscience. 1992;48:449–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li JY, Kling-Petersen A, Dahlstrom A. Influence of spinal cord transection on the presence and axonal transport of CGRP-, chromogranin A-, VIP-, synapsin I-, and synaptophysin-like immunoreactivities in rat motor nerve. J Neurobiol. 1992;23:1094–110.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palacios G, Mengod G, Sarasa M, Baudier J, Palacios JM. De novo synthesis of GAP-43: in situ hybridization histochemistry and light and electron microscopy immunocytochemical studies in regenerating motor neurons of cranial nerve nuclei in the rat brain. Brain Res Mol Brain Res. 1994;24:107–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shojo H, Kibayashi K. Changes in localization of synaptophysin following fluid percussion injury in the rat brain. Brain Res. 2006;1078:198–211.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohta K, Inokuchi T, Gen E, Chang JW. Ultrastructural study of anterograde transport of glial cell line-derived neurotrophic factor from dorsal root ganglion neurons of rats towards the nerve terminal. Cells Tissues Organs. 2001;169:410–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gueye Y, Ferhat L, Sbai O, Bianco J, Ould-Yahoui A, Bernard A, Charrat E, Chauvin JP, Risso JJ, Feron F, et al. Trafficking and secretion of matrix metalloproteinase-2 in olfactory ensheathing glial cells: a role in cell migration? Glia. 2011;59:750–70.

    Article 
    PubMed 

    Google Scholar
     

  • Khan NZ, Cao T, He J, Ritzel RM, Li Y, Henry RJ, Colson C, Stoica BA, Faden AI, Wu J. Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. Brain Behav Immun. 2021;92:165–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, Zhang K, Mei X, Wu C, Tian H. Engineered extracellular vesicles derived from primary M2 macrophages with anti-inflammatory and neuroprotective properties for the treatment of spinal cord injury. J Nanobiotechnol. 2021;19:373.

    Article 
    CAS 

    Google Scholar
     

  • Gosselin RD, Meylan P, Decosterd I. Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front Cell Neurosci. 2013;7:251.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans MA, Broughton BRS, Drummond GR, Ma H, Phan TG, Wallace EM, Lim R, Sobey CG. Amnion epithelial cells—a novel therapy for ischemic stroke? Neural Regen Res. 2018;13:1346–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pourhadi M, Zali H, Ghasemi R, Vafaei-Nezhad S. Promising role of oral cavity mesenchymal stem cell-derived extracellular vesicles in neurodegenerative diseases. Mol Neurobiol. 2022;59:6125–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen YP, Cai JY. The importance of using exosome-loaded miRNA for the treatment of spinal cord injury. Mol Neurobiol. 2023;60:447–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Li C, Bao TY, Zhao X, Xiong W, Luo CY, Yin GY, Fan J. Exosome-shuttled miR-672-5p from anti-inflammatory microglia repair traumatic spinal cord injury by inhibiting AIM2/ASC/caspase-1 signaling pathway mediated neuronal pyroptosis. J Neurotrauma. 2022;39:1057–74.

    Article 
    PubMed 

    Google Scholar
     

  • Yang H, Zhang P, Xie M, Luo J, Zhang J, Zhang G, Wang Y, Lin H, Ji Z. Parallel metabolomic profiling of cerebrospinal fluid, plasma, and spinal cord to identify biomarkers for spinal cord injury. J Mol Neurosci. 2022;72:126–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang HD, Wei ZJ, Li JJ, Feng SQ. Application value of biofluid-based biomarkers for the diagnosis and treatment of spinal cord injury. Neural Regen Res. 2022;17:963–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding SQ, Chen YQ, Chen J, Wang SN, Duan FX, Shi YJ, Hu JG, Lu HZ. Serum exosomal microRNA transcriptome profiling in subacute spinal cord injured rats. Genomics. 2020;112:2092–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z, Teng JF, Jia YJ. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res. 2022;17:194–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L, Jiang X, Shi J, Gao S, Zhu Y, Gu T, Shi E. Exosomes derived from bone marrow mesenchymal stem cells overexpressing microRNA-25 protect spinal cords against transient ischemia. J Thorac Cardiovasc Surg. 2019;157:508–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rager TM, Olson JK, Zhou Y, Wang Y, Besner GE. Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. J Pediatr Surg. 2016;51:942–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun H, Cao X, Gong A, Huang Y, Xu Y, Zhang J, Sun J, Lv B, Li Z, Guan S, et al. Extracellular vesicles derived from astrocytes facilitated neurite elongation by activating the Hippo pathway. Exp Cell Res. 2022;411: 112937.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao X, Li W, Xu Z, Sun Z, Ye H, Wu Y, Zhang Y, Xie L, Jiang D, Jia R, Wang X. Extracellular vesicles from human umbilical cord mesenchymal stem cells reduce lipopolysaccharide-induced spinal cord injury neuronal apoptosis by mediating miR-29b-3p/PTEN. Connect Tissue Res. 2022;63:634–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang JH, Chen YN, He H, Fu CH, Xu ZY, Lin FY. Schwann cells-derived exosomes promote functional recovery after spinal cord injury by promoting angiogenesis. Front Cell Neurosci. 2022;16:1077071.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Xu Y, Chen C, Xie H, Lu H, Hu J. Local delivery of USC-derived exosomes harboring ANGPTL3 enhances spinal cord functional recovery after injury by promoting angiogenesis. Stem Cell Res Ther. 2021;12:20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong D, Cao Y, Li CJ, Li M, Rong ZJ, Jiang L, Guo Z, Lu HB, Hu JZ. Neural stem cell-derived exosomes facilitate spinal cord functional recovery after injury by promoting angiogenesis. Exp Biol Med (Maywood). 2020;245:54–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang M, Wang L, Huang S, He X. Exosomes with high level of miR-181c from bone marrow-derived mesenchymal stem cells inhibit inflammation and apoptosis to alleviate spinal cord injury. J Mol Histol. 2021;52:301–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Song Y, Han X, Qu P, Wang W. Long noncoding RNA PTENP1 affects the recovery of spinal cord injury by regulating the expression of miR-19b and miR-21. J Cell Physiol. 2020;235:3634–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang Q, Hao Y, Wang Y, Zhou Y, Zhuo H, Zhao G. Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal cord injury by downregulating IRF5. Brain Res Bull. 2021;170:199–210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Hu F, Jiao G, Guo Y, Zhou P, Zhang Y, Zhang Z, Yi J, You Y, Li Z, et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFkappaB P65 signaling pathway after spinal cord injury. J Nanobiotechnol. 2022;20:65.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Fan C, Hao W, Zhuang Y, Liu X, Zhao Y, Chen B, Xiao Z, Chen Y, Dai J. NSCs migration promoted and drug delivered exosomes-collagen scaffold via a bio-specific peptide for one-step spinal cord injury repair. Adv Healthc Mater. 2021;10: e2001896.

    Article 
    PubMed 

    Google Scholar
     

  • Mestres I, Chuang JZ, Calegari F, Conde C, Sung CH. SARA regulates neuronal migration during neocortical development through L1 trafficking. Development. 2016;143:3143–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran AP, Warren PM, Silver J. The biology of regeneration failure and success after spinal cord injury. Physiol Rev. 2018;98:881–917.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Zhang Y, Mu J, Chen J, Zhang C, Cao H, Gao J. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett. 2020;20:4298–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison EB, Hochfelder CG, Lamberty BG, Meays BM, Morsey BM, Kelso ML, Fox HS, Yelamanchili SV. Traumatic brain injury increases levels of miR-21 in extracellular vesicles: implications for neuroinflammation. FEBS Open Bio. 2016;6:835–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo Z, Peng W, Xu Y, Xie Y, Liu Y, Lu H, Cao Y, Hu J. Exosomal OTULIN from M2 macrophages promotes the recovery of spinal cord injuries via stimulating Wnt/beta-catenin pathway-mediated vascular regeneration. Acta Biomater. 2021;136:519–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugeno A, Piao W, Yamazaki M, Takahashi K, Arikawa K, Matsunaga H, Hosokawa M, Tominaga D, Goshima Y, Takeyama H, Ohshima T. Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice. Neural Regen Res. 2021;16:1258–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ralston HJ 3rd, Ralston DD. Medial lemniscal and spinal projections to the macaque thalamus: an electron microscopic study of differing GABAergic circuitry serving thalamic somatosensory mechanisms. J Neurosci. 1994;14:2485–502.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balch WE, Dunphy WG, Braell WA, Rothman JE. Reconstitution of the transport of protein between successive compartments of the golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984;39:405–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sollner T, Whitehart SW, Brunner M, Erdjumentbromage H, Geromanos S, Tempst P, Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993;362:318–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novick P, Schekman R. Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of saccharomyces-cerevisiae. Proc Natl Acad Sci USA. 1979;76:1858–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaiser CA, Schekman R. Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell. 1990;61:723–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes invitro—selective externalization of the receptor. Cell. 1983;33:967–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding C, Heuser J, Stahl P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes—demonstration of a pathway for receptor shedding. Eur J Cell Biol. 1984;35:256–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med. 2020;9:1509–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21:7533.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szymoniuk M, Litak J, Sakwa L, Dryla A, Zezulinski W, Czyzewski W, Kamieniak P, Blicharski T. Molecular mechanisms and clinical application of multipotent stem cells for spinal cord injury. Cells. 2022;12:120.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu F, Li XH, Gong MJ, An JQ, Ding XY, Huang SL. Timing of splenectomy after acute spinal cord injury. eNeuro. 2022. https://doi.org/10.1523/ENEURO.0440-21.2021.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mozer AB, Whittemore SR, Benton RL. Spinal microvascular expression of PV-1 is associated with inflammation, perivascular astrocyte loss, and diminished EC glucose transport potential in acute SCI. Curr Neurovasc Res. 2010;7:238–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Wu Z, Zhou L, Shao J, Hu X, Xu W, Ren Y, Zhu X, Ge W, Zhang K, et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct Target Ther. 2022;7:65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hejrati N, Aarabi B, Neal CJ, Ugiliweneza B, Kurpad SN, Shaffrey C, Guest J, Toups EG, Harrop JS, Fehlings MG. Trends in the use of corticosteroids in the management of acute spinal cord injury in north American clinical trials networks (NACTN) sites. J Neurotrauma. 2023. https://doi.org/10.1089/neu.2022.0409.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng YY, Zhao HK, Chen LW, Yao XY, Wang YL, Huang ZW, Li GP, Wang Z, Chen BY. Reactive astrocytes increase expression of proNGF in the mouse model of contused spinal cord injury. Neurosci Res. 2020;157:34–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS ONE. 2018;13: e0190358.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega MA, Fraile-Martinez O, Garcia-Montero C, Haro S, Alvarez-Mon MA, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Perez M, Diaz D, et al. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities. Mil Med Res. 2023;10:26.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang ZJ, Zhang XL, Wang CG, Teng WSY, Xing HY, Wang FQ, Yinwang E, Sun HX, Wu Y, Yu CC, et al. Enhancement of motor functional recovery using immunomodulatory extracellular vesicles-loaded injectable thermosensitive hydrogel post spinal cord injury. Chem Eng J. 2022;433: 134465.

    Article 
    CAS 

    Google Scholar
     

  • Xiong W, Tian HQ, Li ZG, Peng ZB, Wang YS. Curcumin-primed umbilical cord mesenchymal stem cells-derived extracellular vesicles improve motor functional recovery of mice with complete spinal cord injury by reducing inflammation and enhancing axonal regeneration. Neurochem Res. 2023;48:1334–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrova V, Pearson CS, Ching J, Tribble JR, Solano AG, Yang YF, Love FM, Watt RJ, Osborne A, Reid E, et al. Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat Commun. 2020;11:5614.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang T, Wu L, Wang H, Fang J, Yao N, Xu Y. Inflammation level after decompression surgery for a rat model of chronic severe spinal cord compression and effects on ischemia-reperfusion injury. Neurol Med Chir (Tokyo). 2015;55:578–86.

    Article 
    PubMed 

    Google Scholar
     

  • Li XQ, Wang J, Fang B, Tan WF, Ma H. Intrathecal antagonism of microglial TLR4 reduces inflammatory damage to blood-spinal cord barrier following ischemia/reperfusion injury in rats. Mol Brain. 2014;7:28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen YY, Tian ZM, He L, Liu C, Wang NX, Rong LM, Liu B. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury. Stem Cell Res Ther. 2021;12:1–15.

    Article 

    Google Scholar
     

  • Ma WJ, Zhan YX, Zhang YX, Xie XP, Mao CC, Lin YF. Enhanced neural regeneration with a concomitant treatment of framework nucleic acid and stem cells in spinal cord injury. ACS Appl Mater Interfaces. 2020;12:2095–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hervera A, De Virgiliis F, Palmisano I, Zhou LM, Tantardini E, Kong GP, Hutson T, Danzi MC, Perry RB, Santos CXC, et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol. 2018;20:307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu YF, Hou K, Ji T, Wang XS, Liu YN, Zheng YY, Xu JY, Hou Y, Chi GF. The role of exosomal microRNAs in central nervous system diseases. Mol Cell Biochem. 2021;476:2111–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta D, Khan N, Wu J, Jay SM. Extracellular vesicles as an emerging frontier in spinal cord injury pathobiology and therapy. Trends Neurosci. 2021;44:492–506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izadpanah M, Seddigh A, Ebrahimi Barough S, Fazeli SAS, Ai J. Potential of extracellular vesicles in neurodegenerative diseases: diagnostic and therapeutic indications. J Mol Neurosci. 2018;66:172–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selmaj I, Mycko MP, Raine CS, Selmaj KW. The role of exosomes in CNS inflammation and their involvement in multiple sclerosis. J Neuroimmunol. 2017;306:1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardoso AM, Guedes JR, Cardoso AL, Morais C, Cunha P, Viegas AT, Costa R, Jurado A, Pedroso de Lima MC. Recent trends in nanotechnology toward CNS diseases: lipid-based nanoparticles and exosomes for targeted therapeutic delivery. Int Rev Neurobiol. 2016;130:1–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen JC, Wu JH, Mu JF, Li LM, Hu JY, Lin HJ, Cao J, Gao JQ. An antioxidative sophora exosome-encapsulated hydrogel promotes spinal cord repair by regulating oxidative stress microenvironment. Nanomed-Nanotechnol. 2023;47: 102625.

    Article 
    CAS 

    Google Scholar
     

  • Yin ZY, Yin J, Huo YF, Gu GX, Yu J, Li AM, Tang JH. KCC2 overexpressed exosomes meditated spinal cord injury recovery in mice. Biomed Mater. 2022;17: 064104.

    Article 

    Google Scholar
     

  • Wang BC, Chang MM, Zhang RW, Wo J, Wu BW, Zhang H, Zhou ZG, Li ZZ, Zhang F, Zhong C, et al. Spinal cord injury target-immunotherapy with TNF-alpha autoregulated and feedback-controlled human umbilical cord mesenchymal stem cell derived exosomes remodelled by CRISPR/Cas9 plasmid. Biomater Adv. 2022;133: 112624.

    Article 
    PubMed 

    Google Scholar
     

  • Sung SE, Seo MS, Kim YI, Kang KK, Choi JH, Lee S, Sung M, Yim SG, Lim JH, Seok HG, et al. Human epidural AD-MSC exosomes improve function recovery after spinal cord injury in rats. Biomedicines. 2022;10:678.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romanelli P, Bieler L, Heimel P, Skokic S, Jakubecova D, Kreutzer C, Zaunmair P, Smolcic T, Benedetti B, Rohde E, et al. Enhancing functional recovery through intralesional application of extracellular vesicles in a rat model of traumatic spinal cord injury. Front Cell Neurosci. 2022;15: 795008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li SQZ, Liao X, He YX, Chen R, Zheng WV, Tang MS, Guo XH, Chen JH, Hu S, Sun J. Exosomes derived from NGF-overexpressing bone marrow mesenchymal stem cell sheet promote spinal cord injury repair in a mouse model. Neurochem Int. 2022;157: 105339.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li CJ, Qin T, Liu YD, Wen HC, Zhao JY, Luo ZX, Peng W, Lu HB, Duan CY, Cao Y, Hu JZ. Microglia-derived exosomal microRNA-151-3p enhances functional healing after spinal cord injury by attenuating neuronal apoptosis via regulating the p53/p21/CDK1 signaling pathway. Front Cell Dev Biol. 2022;9: 783017.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Huang Y, Ouyang FB, Su MZ, Li WB, Chen JL, Xiao HJ, Zhou XF, Liu BL. Extracellular vesicles derived from mesenchymal stem cells alleviate neuroinflammation and mechanical allodynia in interstitial cystitis rats by inhibiting NLRP3 inflammasome activation. J Neuroinflamm. 2022;19:1–14.

    Article 

    Google Scholar
     

  • Liang Y, Wu JH, Zhu JH, Yang H. Exosomes secreted by hypoxia-pre-conditioned adipose-derived mesenchymal stem cells reduce neuronal apoptosis in rats with spinal cord injury. J Neurotrauma. 2022;39:701–14.

    Article 
    PubMed 

    Google Scholar
     

  • Hua T, Yang M, Song HH, Kong EL, Deng MQ, Li YC, Li J, Liu ZX, Fu HL, Wang Y, Yuan HB. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis. J Nanobiotechnol. 2022;20:1–18.

    Article 

    Google Scholar
     

  • Liu W, Wang YX, Gong FY, Rong YL, Luo YJ, Tang PY, Zhou Z, Zhou ZM, Xu T, Jiang T, et al. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma. 2019;36:469–84.

    Article 
    PubMed 

    Google Scholar
     

  • Han M, Yang HR, Lu XD, Li YM, Liu ZH, Li F, Shang ZH, Wang XF, Li XZ, Li JL, et al. Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair. Nano Lett. 2022;22:6391–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim HY, Kumar H, Jo MJ, Kim J, Yoon JK, Lee JR, Kang M, Choo YW, Song SY, Kwon SP, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment. Nano Lett. 2018;18:4965–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang W, Qu MJ, Li L, Liu T, Lin MM, Yu XB. SiRNA in MSC-derived exosomes silences CTGF gene for locomotor recovery in spinal cord injury rats. Stem Cell Res Ther. 2021;12:1–14.

    Article 
    CAS 

    Google Scholar
     

  • Lai XW, Wang Y, Wang XK, Liu B, Rong LM. miR-146a-5p-modified hUCMSC-derived exosomes facilitate spinal cord function recovery by targeting neurotoxic astrocytes. Stem Cell Res Ther. 2022;13:487.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang X, Han XY, Chen ZH, Fang JF, Huang XN, Wei HB. MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Res Ther. 2018;9:1–12.

    Article 

    Google Scholar
     

  • Zhang L, Han PB. Neural stem cell-derived exosomes suppress neuronal cell apoptosis by activating autophagy via miR-374-5p/STK-4 axis in spinal cord injury. J Musculoskel Neuron. 2022;22:411–21.

    CAS 

    Google Scholar
     

  • Chen JB, Zhang C, Li SY, Li ZM, Lai XJ, Xia QQ. Exosomes derived from nerve stem cells loaded with FTY720 promote the recovery after spinal cord injury in rats by PTEN/AKT signal pathway. J Immunol Res. 2021. https://doi.org/10.1155/2021/8100298.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rong YL, Liu W, Wang JX, Fan J, Luo YJ, Li LW, Kong FQ, Chen J, Tang PY, Cai WH. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis. 2019;10:340.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rong YL, Liu W, Lv CT, Wang JX, Luo YJ, Jiang DD, Li LW, Zhou Z, Zhou W, Li QQ, et al. Neural stem cell small extracellular vesicle-based delivery of 14-3-3t reduces apoptosis and neuroinflammation following traumatic spinal cord injury by enhancing autophagy by targeting Beclin-1. Aging. 2019;11:7723–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia B, Gao JB, Li SY, Huang LL, Zhu L, Ma T, Zhao LH, Yang YJ, Luo K, Shi XW, et al. Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p. Theranostics. 2020;10:8974–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei ZJ, Fan BY, Ding H, Liu Y, Tang HS, Pan DY, Shi JX, Zheng PY, Shi HY, Wu H, et al. Proteomics analysis of Schwann cell-derived exosomes: a novel therapeutic strategy for central nervous system injury. Mol Cell Biochem. 2019;457:51–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li RY, Hu Q, Shi X, Luo ZY, Shao DH. Crosstalk between exosomes and autophagy in spinal cord injury: fresh positive target for therapeutic application. Cell Tissue Res. 2023;391:1–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L. Emerging exosomes and exosomal miRNAs in spinal cord injury. Front Cell Dev Biol. 2021;9: 703989.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41:653–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao CL, Chen Y, Yang TY, Zhao HB, Li DZ. Mesenchymal stem cell derived exosomes suppress neuronal cell ferroptosis via IncGm36569/miR-5627-5p/FSP1 axis in acute spinal cord injury. Stem Cell Rev Rep. 2022;18:1127–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang QM, Chen SY, Fu SP, Zhou H, Zhang Q, Ao J, Luo XP, Zhang T. Regulatory role of mesenchymal stem cells on secondary inflammation in spinal cord injury. J Inflamm Res. 2022;15:573–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousefifard M, Nasirinezhad F, Shardi Manaheji H, Janzadeh A, Hosseini M, Keshavarz M. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther. 2016;7:36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu B, Zheng WJ, Dai L, Fu SJ, Shi EY. Bone marrow mesenchymal stem cell derived exosomal miR-455-5p protects against spinal cord ischemia reperfusion injury. Tissue Cell. 2022;74: 101678.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang CG, Wang M, Xia KS, Wang JK, Cheng F, Shi KS, Ying LW, Yu C, Xu HB, Xiao SN, et al. A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioact Mater. 2021;6:2523–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Chen C, Wang H, Du R, Ji JW, Xu T, Yang CW, Chen XQ. Astrocyte-derived sEVs alleviate fibrosis and promote functional recovery after spinal cord injury in rats. Int Immunopharmacol. 2022;113: 109322.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge XH, Tang PY, Rong YL, Jiang DD, Lu X, Ji CY, Wang JX, Huang CY, Duan A, Liu Y, et al. Exosomal miR-155 from M1-polarized macrophages promotes EndoMT and impairs mitochondrial function via activating NF-kappa B signaling pathway in vascular endothelial cells after traumatic spinal cord injury. Redox Biol. 2021;41: 101932.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JR, Kyung JW, Kumar H, Kwon SP, Song SY, Han IB, Kim BS. Targeted delivery of mesenchymal stem cell-derived nanovesicles for spinal cord injury treatment. Int J Mol Sci. 2020;21:4185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci. 2020;10:1–17.

    Article 

    Google Scholar
     

  • Osorio-Querejeta I, Carregal-Romero S, Ayerdi-Izquierdo A, Mager I, Nash LA, Wood M, Egimendia A, Betanzos M, Alberro A, Iparraguirre L, et al. MiR-219a-5p enriched extracellular vesicles induce OPC differentiation and EAE improvement more efficiently than liposomes and polymeric nanoparticles. Pharmaceutics. 2020;12:186.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yildirimer L, Zhang Q, Kuang S, Cheung CJ, Chu KA, He Y, Yang M, Zhao X. Engineering three-dimensional microenvironments towards in vitro disease models of the central nervous system. Biofabrication. 2019;11: 032003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6:1601118.

    Article 

    Google Scholar
     

  • Yang Z, Shi J, Xie J, Wang Y, Sun J, Liu T, Zhao Y, Zhao X, Wang X, Ma Y, et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020;4:69–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeyaram A, Lamichhane TN, Wang S, Zou L, Dahal E, Kronstadt SM, Levy D, Parajuli B, Knudsen DR, Chao W, Jay SM. Enhanced loading of functional miRNA Cargo via pH gradient modification of extracellular vesicles. Mol Ther. 2020;28:975–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mu JF, Li LM, Wu JH, Huang TC, Zhang Y, Cao J, Ma T, Chen JC, Zhang CY, Zhang XQ, et al. Hypoxia-stimulated mesenchymal stem cell-derived exosomes loaded by adhesive hydrogel for effective angiogenic treatment of spinal cord injury. Biomater Sci. 2022;10:1803–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng JY, Chen Z, Liu C, Zhong M, Wang SH, Sun YJ, Wen HQ, Shu T. Bone mesenchymal stem cell-derived exosomes-loaded injectable hydrogel for minimally invasive treatment of spinal cord injury. Nanomedicine. 2021;16:1567–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hedayat M, Ahmadi M, Shoaran M, Rezaie J. Therapeutic application of mesenchymal stem cells derived exosomes in neurodegenerative diseases: a focus on non-coding RNAs cargo, drug delivery potential, perspective. Life Sci. 2023;320: 121566.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao ZS, Zhang CJ, Xia N, Tian H, Li DY, Lin JQ, Mei XF, Wu C. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater. 2021;126:211–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren ZH, Qi Y, Sun SY, Tao YY, Shi RY. Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair. Stem Cells Dev. 2020;29:1467–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaeger CB, Blight AR. Spinal cord compression injury in guinea pigs: structural changes of endothelium and its perivascular cell associations after blood-brain barrier breakdown and repair. Exp Neurol. 1997;144:381–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu JW, Liu WS. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics. 2020;123:321–35.

    Article 

    Google Scholar
     

  • Rousseau S, Rousseau R. Bibliometric techniques and their use in business and economics research. J Econ Surv. 2021;35:1428–51.

    Article 

    Google Scholar
     

  • Lim YJ, Jung GN, Park WT, Seo MS, Lee GW. Therapeutic potential of small extracellular vesicles derived from mesenchymal stem cells for spinal cord and nerve injury. Front Cell Dev Biol. 2023;11:1151357.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gimona M, Pachler K, Laner-Plamberger S, Schallmoser K, Rohde E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int J Mol Sci. 2017;18:1190.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar