Nanotechnology

Advances in nanomedicines for lymphatic imaging and therapy | Journal of Nanobiotechnology


  • Kase AM, Menke D, Tan W. Breast cancer metastasis to the bladder: a literature review. BMJ Case Rep. 2018;2018:bcr2017222031.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckhardt BL, Cao Y, Redfern AD, Chi LH, Burrows AD, Roslan S, Sloan EK, Parker BS, Loi S, Ueno NT, Lau PKH, Latham B, Anderson RL. Activation of canonical BMP4-SMAD7 signaling suppresses breast cancer metastasis. Cancer Res. 2020;80:1304–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Wang W, Jiang Y, Qian X. A dual-transformation with contrastive learning framework for lymph node metastasis prediction in pancreatic cancer. Med Image Anal. 2023;5: 102753.

    Article 

    Google Scholar
     

  • Ho AS, Kim S, Tighiouart M, Gudino C, Mita A, Scher KS, Laury A, Prasad R, Shiao SL, Ali N, Patio C, Mallen-St Clair J, Van Eyk JE, Zumsteg ZS. Association of quantitative metastatic lymph node burden with survival in hypopharyngeal and laryngeal cancer. JAMA Oncol. 2018;4:985–9.

    Article 
    PubMed 

    Google Scholar
     

  • Ye B, Fan D, Xiong W, Li M, Yuan J, Jiang Q, Zhao Y, Lin J, Liu J, Lv Y, Wang X, Li Z, Su J, Qiao Y. Oncogenic enhancers drive esophageal squamous cell carcinogenesis and metastasis. Nat Commun. 2021;12:4457.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY. Engineering magnetosomes for high-performance cancer vaccination. ACS Cent Sci. 2019;5:796–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott EA, Karabin NB, Augsornworawat P. Overcoming immune dysregulation with immunoengineered nanobiomaterials. Annu Rev Biomed Eng. 2017;19:57–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res Int. 2020;27:19151–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012. https://doi.org/10.3402/nano.v3i0.18496.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin N, Qiu J, Song J, Yu C, Fang Y, Wu W, Yang W, Wang Y. Application of nano-carbon and titanium clip combined labeling in robot-assisted laparoscopic transverse colon cancer surgery. BMC Surg. 2021;21:257.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altundag K, Dede DS, Purnak T. Albumin-bound paclitaxel (ABI-007; Abraxane) in the management of basal-like breast carcinoma. J Clin Pathol. 2007;60:958.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, An J, Zhang H, Zhang S, Zhang H, Wang L, Zhang H, Zhang Z. Personalized cancer immunotherapy via transporting endogenous tumor antigens to lymph nodes mediated by nano Fe3 O4. Small. 2018;14: e1801372.

    Article 
    PubMed 

    Google Scholar
     

  • Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release. 2014;193:241–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles. J Control Release. 2006;112:26–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater. 2019;4:415–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh HJ, Yang D, Oh HW, Jeon JG, Kim C, Ahn JY, Han SW, Kim CY. Chronologic trends of cancer-related lymph node research in PubMed: informetrics analysis. Ann Surg Treat Res. 2020;99:305–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016;594:5749–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gashev AA. Basic mechanisms controlling lymph transport in the mesenteric lymphatic net. Ann N Y Acad Sci. 2010;1207:E16-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater. 2019;4:415–428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clement CC, Wang W, Dzieciatkowska M, Cortese M, Hansen KC, Becerra A, Thangaswamy S, Nizamutdinova I, Moon JY, Stern LJ, Gashev AA, Zawieja D, Santambrogio L. Quantitative profiling of the lymph node clearance capacity. Sci Rep. 2018;8:11253.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerner MY, Torabi-Parizi P, Germain RN. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity. 2015;42:172–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Liu Y, Xu D, Zang J, Zheng X, Zhao Y, Li Y, He R, Ruan S, Dong H, Gu J, Yang Y, Cheng Q, Li Y. Targeting the negative feedback of adenosine-A2AR metabolic pathway by a tailored nanoinhibitor for photothermal immunotherapy. Adv Sci. 2022;9: e2104182.

    Article 

    Google Scholar
     

  • Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node. Nat Rev Immunol. 2020;20:566–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 2001;194:1361–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schudel A, Chapman AP, Yau MK, Higginson CJ, Francis DM, Manspeaker MP, Avecilla ARC, Rohner NA, Finn MG, Thomas SN. Programmable multistage drug delivery to lymph nodes. Nat Nanotechnol. 2020;15:491–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dukhin SS, Labib ME. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes. Adv Colloid Interface Sci. 2013;199–200:23–43.

    Article 
    PubMed 

    Google Scholar
     

  • Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev. 2019;151–152:72–93.

    Article 
    PubMed 

    Google Scholar
     

  • Patravale VB, Prabhu RH, Bora CR. Lymphatic delivery: concept, challenges and applications. Indian Drugs. 2017;54:5–22.

    Article 

    Google Scholar
     

  • Hawley AE, Davis SS, Illum L. Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics. Adv Drug Deliv Rev. 1995;17:129–48.

    Article 
    CAS 

    Google Scholar
     

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2:249–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ja C, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA. 2006;103:4930–4.

    Article 

    Google Scholar
     

  • Montes-Casado M, Sanvicente A, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés P, Portolés MT. An immunological approach to the biocompatibility of mesoporous SiO2-CaO nanospheres. Int J Mol Sci. 2020;21:8291.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel HM, Boodle KM, Vaughan-Jones R. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta. 1984;801:76–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjabi MS, Naha A, Shetty D, Nayak UY. Lymphatic drug transport and associated drug delivery technologies: a comprehensive review. Curr Pharm Des. 2021;27(17):1992–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev. 2021;179: 113914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, De Koker S, De Geest BG. Engineering strategies for lymph node targeted immune activation. Acc Chem Res. 2020;53(10):2055–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gracia G, Cao E, Feeney OM, Johnston APR, Porter CJH, Trevaskis NL. High-density lipoprotein composition influences lymphatic transport after subcutaneous administration. Mol Pharm. 2020;17(8):2938–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He X, Wang J, Tang Y, Chiang ST, Han T, Chen Q, Qian C, Shen X, Li R, Ai X. Recent advances of emerging spleen-targeting nanovaccines for immunotherapy. Adv Healthc Mater. 2023;8: e2300351.

    Article 

    Google Scholar
     

  • Menon I, Bagwe P, Gomes KB, Bajaj L, Gala R, Uddin MN, D’Souza MJ, Zughaier SM. Microneedles: a new generation vaccine delivery system. Micromachines. 2021;12(4):435.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trac N, Chung EJ. Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes. Exp Biol Med (Maywood). 2021;246(22):2358–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furubayashi T, Inoue D, Kimura S, Tanaka A, Sakane T. Evaluation of the pharmacokinetics of intranasal drug delivery for targeting cervical lymph nodes in rats. Pharmaceutics. 2021;13(9):1363.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater. 2019;4(6):415–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida T, Kojima H, Sako K, Kondo H. Drug delivery to the intestinal lymph by oral formulations. Pharm Dev Technol. 2022;27(2):175–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Refaat H, Naguib YW, Elsayed MMA, Sarhan HAA, Alaaeldin E. Modified spraying technique and response surface methodology for the preparation and optimization of propolis liposomes of enhanced anti-proliferative activity against human melanoma cell Line A375. Pharmaceutics. 2019;11:558.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol. 1964;8:660–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun S, Sun S, Sun Y, Wang P, Zhang J, Du W, Wang S, Liang X. Bubble-manipulated local drug release from a smart thermosensitive cerasome for dual-mode imaging guided tumor chemo-photothermal therapy. Theranostics. 2019;9:8138–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7:319–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung HS, Neuman KC. Surface Modification of fluorescent nanodiamonds for biological applications. Nanomaterials. 2021;11:153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv Drug Deliv Rev. 2018;128:84–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milicic A, Kaur R, Reyes-Sandoval A, Tang CK, Honeycutt J, Perrie Y, Hill AV. Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses. PLoS ONE. 2012;7: e34255.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu Y, Qian L, Ke Y, Feng X, Chen X, Liu F, Yu L, Zhang L, Tao Y, Xu R, Wei J, Liu B, Liu Q. Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. J Nanobiotechnol. 2022;20:190.

    Article 
    CAS 

    Google Scholar
     

  • Warashina S, Nakamura T, Sato Y, Fujiwara Y, Hyodo M, Hatakeyama H, Harashima H. A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. J Control Release. 2016;225:183–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, Melo MB, Mueller S, Irvine DJ. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Invest. 2015;125:2532–46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Ye Z, Huang C, Qiu M, Song D, Li Y, Xu Q. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc Natl Acad Sci USA. 2022;119: e2207841119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phosphatidylserine lipid nanoparticles promote systemic RNA delivery to secondary lymphoid organs. Nano Lett. 2022; 22 (20): 8304–8311.

  • Trimaille T, Verrier B. Micelle-based adjuvants for subunit vaccine delivery. Vaccines. 2015;3:803–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Iqbal M, Jiang B, Wang Z, Kim J, Nanjundan AK, Whitten AE, Wood K, Yamauchi Y. Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chem Sci. 2019;10:4054–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui M, Jin M, Han M, Zang Y, Li C, Zhang D, Huang W, Gao Z, Yin X. Improved antitumor outcomes for colon cancer using nanomicelles loaded with the novel antitumor agent LA67. Int J Nanomed. 2020;15:3563–76.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Dong Q, Yan Z, Lu W, Feng L, Xie C, Xie Z, Su B, Liu M. MPEG-DSPE polymeric micelle for translymphatic chemotherapy of lymph node metastasis. Int J Pharm. 2015;487:8–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thol K, Pawlik P, McGranahan N. Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Med. 2022;14:137.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehser S, Chuang JJ, Kleist C, Sandra-Petrescu F, Iancu M, Wang D, Opelz G, Terness P. Suppressive dendritic cells as a tool for controlling allograft rejection in organ transplantation: promises and difficulties. Hum Immunol. 2008;69:165–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jewell CM, López SC, Irvine DJ. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci USA. 2011;108:15745–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chida T, Miura Y, Cabral H, Nomoto T, Kataoka K, Nishiyama N. Epirubicin-loaded polymeric micelles effectively treat axillary lymph nodes metastasis of breast cancer through selective accumulation and pH-triggered drug release. J Control Release. 2018;292:130–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, Toh K, Yamada N, Higuchi Y, Konishi S, Kano MR, Nishihara H, Miura Y, Nishiyama N, Kataoka K. Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano. 2015;9:4957–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng HY, Yuan Y, Zhang Y, Liu HJ, Dong X, Yang SC, Liu XL, Lai X, Zhu MH, Wang J, Lu Q, Lin Q, Chen HZ, Lovell JF, Sun P, Fang C. Targeted micellar phthalocyanine for lymph node metastasis homing and photothermal therapy in an orthotopic colorectal tumor model. Nanomicro Lett. 2021;13:145.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar A, Tan A, Wong J, Spagnoli JC, Lam J, Blevins BD, Thorne GNL, Ashkan K, Xie J, Liu H. Nanotechnology for neuroscience: Promising approaches for diagnostics, therapeutics and brain activity mapping. Adv Funct Mater. 2017;27:1700489.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anraku Y, Kuwahara H, Fukusato Y, Mizoguchi A, Ishii T, Nitta K, Matsumoto Y, Toh K, Miyata K, Uchida S, Nishina K, Osada K, Itaka K, Nishiyama N, Mizusawa H, Yamasoba T, Yokota T, Kataoka K. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat Commun. 2017;8:1001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Feng Q, Yang H, Wang G, Huang L, Bai Q, Zhang C, Wang Y, Chen Y, Cheng Q, Chen M, Han Y, Yu Z, Lesniak MS, Cheng Y. A Light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer. Adv Sci. 2018;5:1800382.

    Article 

    Google Scholar
     

  • Liu Y, Wang Z, Yu F, Li M, Zhu H, Wang K, Meng M, Zhao W. The adjuvant of α-galactosylceramide presented by gold nanoparticles enhances antitumor immune responses of MUC1 antigen-based tumor vaccines. Int J Nanomedicine. 2021;16:403–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mottas I, Bekdemir A, Cereghetti A, Spagnuolo L, Yang YS, Müller M, Irvine DJ, Stellacci F, Bourquin C. Amphiphilic nanoparticle delivery enhances the anticancer efficacy of a TLR7 ligand via local immune activation. Biomaterials. 2019;190–191:111–20.

    Article 
    PubMed 

    Google Scholar
     

  • Oladipo AO, Oluwafemi OS, Songca SP, Sukhbaatar A, Mori S, Okajima J, Komiya A, Maruyama S, Kodama T. A novel treatment for metastatic lymph nodes using lymphatic delivery and photothermal therapy. Sci Rep. 2017;7:45459.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of iron oxide (Fe2O3) nanocomposites in advanced biomedical applications: a state-of-the-art review. Nanomaterials. 2022;12:3873.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kjellman P, in ‘t Zandt R, Fredriksson S, Strand SE. 2014. Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale size tailoring. Nanomedicine. 2014;10: 1089–95.

  • Zaloga J, Janko C, Nowak J, Matuszak J, Knaup S, Eberbeck D, Tietze R, Unterweger H, Friedrich RP, Duerr S, Heimke-Brinck R, Baum E, Cicha I, Dörje F, Odenbach S, Lyer S, Lee G, Alexiou C. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility. Int J Nanomedicine. 2014;9:4847–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou Y, Liu P, Liu CH, Zhi XT. Doxorubicin-loaded mesoporous magnetic nanoparticles to induce apoptosis in breast cancer cells. Biomed Pharmacother. 2015;69:355–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale. 2015;7:12728–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, Weaver JC, Dellacherie MO, Shih TY, Ali OA, Kim J, Wucherpfennig KW, Mooney DJ. A facile approach to enhance antigen response for personalized cancer vaccination. Nat Mater. 2018;17:528–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Yang Y, Gu Z, Zhang J, Song H, Xiang G, Yu C. Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials. 2018;175:82–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khakpour E, Salehi S, Naghib SM, Ghorbanzadeh S, Zhang W. Graphene-based nanomaterials for stimuli-sensitive controlled delivery of therapeutic molecules. Front Bioeng Biotechnol. 2023;11:1129768.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y, Hu J, Wang C, Ni Q, Fu D. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur J Cancer. 2011;47:1873–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Lu T, Yang M, Sun D, Xia Y, Wang T. Hydrogel 3D printing with the capacitor edge effect. Sci Adv. 2019;5:eaau8769.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Chen H, Zheng D, Zhang H, Deng L, Cui W, Zhang Y, Santos HA, Shen H. Gene-hydrogel microenvironment regulates extracellular matrix metabolism balance in nucleus pulposus. Adv Sci. 2019;7:1902099.

    Article 

    Google Scholar
     

  • Deng W, Yan Y, Zhuang P, Liu X, Tian K, Huang W, Li C. Synthesis of nanocapsules blended polymeric hydrogel loaded with bupivacaine drug delivery system for local anesthetics and pain management. Drug Deliv. 2022;29:399–412.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, Song Q, Li G, Tan S, Zhang Z. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J Control Release. 2016;228:26–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nuhn L, Vanparijs N, De Beuckelaer A, Lybaert L, Verstraete G, Deswarte K, Lienenklaus S, Shukla NM, Salyer AC, Lambrecht BN, Grooten J, David SA, De Koker S, De Geest BG. pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci USA. 2016;113:8098–103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Koker S, Cui J, Vanparijs N, Albertazzi L, Grooten J, Caruso F, De Geest BG. Engineering polymer hydrogel nanoparticles for lymph node-targeted delivery. Angew Chem Int Ed Engl. 2016;55:1334–9.

    Article 
    PubMed 

    Google Scholar
     

  • Urimi D, Hellsing M, Mahmoudi N, Söderberg C, Widenbring R, Gedda L, Edwards K, Loftsson T, Schipper N. Structural characterization study of a lipid nanocapsule formulation intended for drug delivery applications using small-angle scattering techniques. Mol Pharm. 2022;19:1068–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An overview of the applications of nanomaterials and nanodevices in the food industry. Foods. 2020;9:148.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vicente S, Goins BA, Sanchez A, Alonso MJ, Phillips WT. Biodistribution and lymph node retention of polysaccharide-based immunostimulating nanocapsules. Vaccine. 2014;32:1685–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li AV, Moon JJ, Abraham W, Suh H, Elkhader J, Seidman MA, Yen M, Im EJ, Foley MH, Barouch DH, Irvine DJ. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci Transl Med. 2013;5:204ra130.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nawaz M, Yusuf N, Habib S, Shakoor RA, Ubaid F, Ahmad Z, Kahraman R, Mansour S, Gao W. Development and properties of polymeric nanocomposite coatings. Polymers. 2019;11:852.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato Y, Hashiba K, Sasaki K, Maeki M, Tokeshi M, Harashima H. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J Control Release. 2019;295:140–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao W, Fang RH, Thamphiwatana S, Luk BT, Li J, Angsantikul P, Zhang Q, Hu CM, Zhang L. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015;15:1403–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526:118–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Liu X, Xiang X, Pang X, Chen S, Zhang Y, Ren E, Zhang L, Liu X, Lv P, Wang X, Luo W, Xia N, Chen X, Liu G. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat Nanotechnol. 2022;17:531–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Li F, Ye T, Wang J, Lyu C, Qing S, Ding Z, Gao X, Jia R, Yu D, Ren J, Wei W, Ma G. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci Transl Med. 2021;13:eabb6981.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong D, Zhang L, Xu K, Wan X, Guo Y. Prognostic value of pre-treatment CT radiomics and clinical factors for the overall survival of advanced (IIIB-IV) lung adenocarcinoma patients. Front Oncol. 2021;11:628982.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiechio RM, Ducarre S, Marets C, Dupont A, Even-Hernandez P, Pinson X, Dutertre S, Artzner F, Musumeci P, Ravel C, Faro MJL, Marchi V. Encapsulation of luminescent gold nanoclusters into synthetic vesicles. Nanomaterials. 2022;12:3875.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon HY, Chang IH, Goo YT, Kim CH, Kang TH, Kim SY, Lee SJ, Song SH, Whang YM, Choi YW. Intravesical delivery of rapamycin via folate-modified liposomes dispersed in thermo-reversible hydrogel. Int J Nanomedicine. 2019;14:6249–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osborne MP, Richardson VJ, Jeyasingh K, Ryman BE. Radionuclide-labelled liposomes–a new lymph node imaging agent. Int J Nucl Med Biol. 1979;6:75–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips WT, Klipper R, Goins B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J Pharmacol Exp Ther. 2000;295:309–13.

    CAS 
    PubMed 

    Google Scholar
     

  • Phillips WWT, Klipper R, Goins B. Use of (99m)Tc-labeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nucl Med. 2001;42:446–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Yuan B, Zhao S, Hu P, Cui J, Niu QJ. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification. Nat Commun. 2020;11(1):6102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett. 2006;6:1459–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW, Sato N, Tagaya Y, Morris JC, Waldmann TA. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst. 2004;96:703–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C. Optimization of dendrimer structure for sentinel lymph node imaging: Effects of generation and terminal group. Nanomedicine. 2015;11(8):2119–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yakunin S, Chaaban J, Benin BM, Cherniukh I, Bernasconi C, Landuyt A, Shynkarenko Y, Bolat S, Hofer C, Romanyuk YE, Cattaneo S, Pokutnyi SI, Schaller RD, Bodnarchuk MI, Poulikakos D, Kovalenko MV. Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals. Nat Commun. 2021;12:981.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han SJ, Rathinaraj P, Park SY, Kim YK, Lee JH, Kang IK, Moon JS, Winiarz JG. Specific intracellular uptake of herceptin-conjugated CdSe/ZnS quantum dots into breast cancer cells. Biomed Res Int. 2014;2014: 954307.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG. Engineering InAs(x)P(1–x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J Am Chem Soc. 2005;127:10526–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai T, Zhou S, Yin C, Li S, Cao W, Liu W, Sun K, Dou H, Cao Y, Zhou G. Dextran-based fluorescent nanoprobes for sentinel lymph node mapping. Biomaterials. 2014;35:8227–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hultborn KA, Larsson LG, Raghult I. The lymph drainage from the breast to the axillary and parasternal lymph nodes, studied with the aid of colloidal Au198. Acta radiol. 1955;43:52–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Chakraborty S, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for imaging tumors and thrombosis by SPECT. Theranostics. 2011;1:58–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm AJ, Mijnhout GS, Franssen EJ. Radiopharmaceuticals in sentinel lymph-node detection—an overview. Eur J Nucl Med. 1999;26:S36-42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie F, Zhang D, Cheng L, Yu L, Yang L, Tong F, Liu H, Wang S, Wang S. Intradermal microbubbles and contrast-enhanced ultrasound (CEUS) is a feasible approach for sentinel lymph node identification in early-stage breast cancer. World J Surg Oncol. 2015;13:319.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montoya Mira J, Wu L, Sabuncu S, Sapre A, Civitci F, Ibsen S, Esener S, Yildirim A. Gas-stabilizing sub-100 nm mesoporous silica nanoparticles for ultrasound theranostics. ACS Omega. 2020;5:24762–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie Z, Luo N, Liu J, Zeng X, Zhang Y, Su D. Multi-mode biodegradable tumour-microenvironment sensitive nanoparticles for targeted breast cancer imaging. Nanoscale Res Lett. 2020;15:81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stride E, Saffari N. The potential for thermal damage posed by microbubble ultrasound contrast agents. Ultrasonics. 2004;42:907–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma JJ, Zhang DB, Zhang WF, Wang X. Application of nanocarbon in breast approach endoscopic thyroidectomy thyroid cancer surgery. J Laparoendosc Adv Surg Tech A. 2020;30:547–52.

    Article 
    PubMed 

    Google Scholar
     

  • Wang R, Mo S, Liu Q, Zhang W, Zhang Z, He Y, Cai G, Li X. The safety and effectiveness of carbon nanoparticles suspension in tracking lymph node metastases of colorectal cancer: a prospective randomized controlled trial. Jpn J Clin Oncol. 2020;50:535–42.

    Article 
    PubMed 

    Google Scholar
     

  • Schilham MGM, Zamecnik P, Privé BM, Israël B, Rijpkema M, Scheenen T, Barentsz JO, Nagarajah J, Gotthardt M. Head-to-head comparison of 68Ga-prostate-specific membrane antigen PET/CT and ferumoxtran-10-enhanced MRI for the diagnosis of lymph node metastases in prostate cancer patients. J Nucl Med. 2021;62:1258–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace AM, Hoh CK, Ellner SJ, Darrah DD, Schulteis G, Vera DR. Lymphoseek: a molecular imaging agent for melanoma sentinel lymph node mapping. Ann Surg Oncol. 2007;14:913–21.

    Article 
    PubMed 

    Google Scholar
     

  • Bradbury MS, Pauliah M, Zanzonico P, Wiesner U, Patel S. Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:535–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He P, Ren E, Chen B, Chen H, Cheng H, Gao X, Liang X, Liu H, Li J, Li B, Chen A, Chu C, Chen X, Mao J, Zhang Y, Liu G. A super-stable homogeneous lipiodol-hydrophilic chemodrug formulation for treatment of hepatocellular carcinoma. Theranostics. 2022;12:1769–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He P, Xiong Y, Ye J, Chen B, Cheng H, Liu H, Zheng Y, Chu C, Mao J, Chen A, Zhang Y, Li J, Tian J, Liu G. A clinical trial of super-stable homogeneous lipiodol-nanoICG formulation-guided precise fluorescent laparoscopic hepatocellular carcinoma resection. J Nanobiotechnology. 2022;20:250.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Cheng H, Chen H, Xu P, Ren E, Jiang Y, Li D, Gao X, Zheng Y, He P, Lin H, Chen B, Lin G, Chen A, Chu C, Mao J, Liu G. A pure nanoICG-based homogeneous lipiodol formulation: toward precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization. Eur J Nucl Med Mol Imaging. 2022;49:2605–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in therapeutic implications of inorganic drug delivery nano-platforms for cancer. Int J Mol Sci. 2019;20:965.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eid HM, Ali AA, Ali AMA, Eissa EM, Hassan RM, Abo El-Ela FI, Hassan AH. Potential use of tailored citicoline chitosan-coated liposomes for effective wound healing in diabetic rat model. Int J Nanomedicine. 2022;17:555–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Kang S, Park H, Sun JG, Kim EC, Shim G. Nanoparticles for lymph node-directed delivery. Pharmaceutics. 2023;15:565.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng H, Yang X, Liu G. Superstable homogeneous iodinated formulation technology: revolutionizing transcatheter arterial chemoembolization. Sci Bull. 2020;65:1685–7.

    Article 
    CAS 

    Google Scholar
     

  • Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci. 2021;78:5139–61.

    Article 
    CAS 
    PubMed 

    Google Scholar