Nanotechnology

Advances in preparation and application of antibacterial hydrogels | Journal of Nanobiotechnology


  • Andersson DI, Hughes D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freitas AR, Werner G. Nosocomial pathogens and antimicrobial resistance: modern challenges and future opportunities. Microorganisms. 2023;11:1685.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Liu D, Guo R, Wang B, Lu Y. Intelligent jellyfish-type Janus nanoreactor targeting synergistic treatment of bacterial infections. ACS Appl Bio Mater. 2023;6:2384–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Potter CW. A history of influenza. J Appl Microbiol. 2001;91:572–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith AM, McCullers JA. Secondary bacterial infections in influenza virus infection pathogenesis. Curr Top Microbiol. 2014;385:327–56.


    Google Scholar
     

  • Antos D, Alcorn JF. IFNλ: balancing the light and dark side in pulmonary infection. Mbio. 2023. https://doi.org/10.1128/mbio.02850-22.

    Article 
    PubMed 

    Google Scholar
     

  • Tan SY, Tatsumura Y. Alexander Fleming (1881–1955): discoverer of penicillin. Singapore Med J. 2015;56:366–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ersanli C, Tzora A, Skoufos I, Voidarou CC, Zeugolis DI. Recent advances in collagen antimicrobial biomaterials for tissue engineering applications: a review. Int J Mol Sci. 2023;24:7808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011;2:203.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan SN, Khan AU. Breaking the spell: combating multidrug resistant ‘Superbugs.’ Front Microbiol. 2016;7:174.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Wang Z, Ren J, Qu X. Enzyme mimicry for combating bacteria and biofilms. Accounts Chem Res. 2018;51:789–99.

    Article 
    CAS 

    Google Scholar
     

  • Lang J, Ma X, Liu SS, Streever DL, Serota MD, Franklin T, Loew ER, Yang R. On-demand synthesis of antiseptics at the site of infection for treatment of otitis media. Nano Today. 2022;47:101672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, Huang Y, Dong K, Ren J, Qu X. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano. 2017;11:4651–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao H, Wu M, Lin L, Wu Z, Bae M, Park S, Wang S, Zhang W, Gao J, Wang D, Piao Y. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: status and trends. Mater Today Bio. 2022;16:100429.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng T, Shi Q, Chen M, Yu W, Yang T. Antibacterial-based hydrogel coatings and their application in the biomedical field-A review. J Func Biomater. 2023;14:243.

    Article 
    CAS 

    Google Scholar
     

  • Nagaraja K, Rao KM, Hemalatha D, Zo S, Han SS, Rao KSVK, Strychnos PL. Seed polysaccharide-based stimuli-responsive hydrogels and their silver nanocomposites for the controlled release of chemotherapeutics and antimicrobial applications. ACS Omega. 2022;7:12856–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017. https://doi.org/10.1126/science.aaf3627.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Feng X, Pei Y, Wang J, Ding J, Chen L. α-Cyclodextrin concentration-controlled thermo-sensitive supramolecular hydrogels. Mater Sci Eng C Mater Biol Appl. 2018;82:25–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suneetha M, Rao KM, Han SS. Cell/Tissue Adhesive, self-healable, biocompatible, hemostasis, and antibacterial hydrogel dressings for wound healing applications. Adv Mater Interfaces. 2022;9:2102369.

    Article 
    CAS 

    Google Scholar
     

  • Usturk S, Altundag EM, Yilmaz E. Pullulan/polyHEMA cryogels: synthesis, physicochemical properties, and cell viability. Adv Mater Interfaces. 2022;139:51822.


    Google Scholar
     

  • Fukunaga K, Tsutsumi H, Mihara H. Self-assembling peptides as building blocks of functional materials for biomedical applications. B Chem Soc Jpn. 2019;92:391–9.

    Article 
    CAS 

    Google Scholar
     

  • Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart hydrogels-synthetic stimuli-responsive antitumor drug release systems. Int J Nanomed. 2020;15:4541–72.

    Article 

    Google Scholar
     

  • Zhang L, Zuo X, Li S, Sun M, Xie H, Zhang K, Zhou J, Che L, Ma J, Jia Z, et al. Synergistic therapy of magnetism-responsive hydrogel for soft tissue injuries. Bioact Mater. 2019;4:160–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neves SC, Moroni L, Barrias CC, Granja PL. Leveling up hydrogels: hybrid systems in tissue engineering. Trends Biotechnol. 2020;38:292–315.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unal AZ, West JL. Synthetic ECM: bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug Chem. 2020;31:2253–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu J, Quan Y, Lai Y, Zheng Z, Hu Z, Wang X, Dai T, Zhang Q, Cheng Y. A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J Control Release. 2017;247:145–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mensah A, Rodgers AM, Larrañeta E, McMullan L, Tambuwala M, Callan JF, Courtenay AJ. Treatment of periodontal infections, the possible role of hydrogels as antibiotic drug-delivery systems. Antibiotics. 2023;12:1073.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao KM, Narayanan KB, Uthappa UT, Park PH, Choi I, Han SS. Tissue adhesive, self-healing, biocompatible, hemostasis, and antibacterial properties of fungal-derived carboxymethyl chitosan-polydopamine hydrogels. Pharmaceutics. 2022;14:1028.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018;107:678–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Niu D, Shi T, Yun W, Yan S, Xu G, Yin J. Injectable, in situ self-cross-linking, self-healing poly(l-glutamic acid)/polyethylene glycol hydrogels for cartilage tissue engineering. ACS Biomater Sci Eng. 2023;9:2625–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mat Sci Eng C-Mater. 2015;57:414–33.

    Article 
    CAS 

    Google Scholar
     

  • Wei J, Wei G, Shang Y, Zhou J, Wu C, Wang Q. Dissolution-crystallization transition within a polymer hydrogel for a processable ultratough electrolyte. Adv Mater. 2019;31:1900248.

    Article 

    Google Scholar
     

  • Martínez-Martínez M, Rodríguez-Berna G, Gonzalez-Alvarez I, Hernández MJ, Corma A, Bermejo M, Merino V, Gonzalez-Alvarez M. Ionic hydrogel based on chitosan cross-linked with 6-phosphogluconic trisodium salt as a drug delivery system. Biomacromol. 2018;19:1294–304.

    Article 

    Google Scholar
     

  • Takei T, Yoshihara R, Danjo S, Fukuhara Y, Evans C, Tomimatsu R, Ohzuno Y, Yoshida M. Hydrophobically-modified gelatin hydrogel as a carrier for charged hydrophilic drugs and hydrophobic drugs. Int J Biol Macromol. 2020;149:140–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makarova AO, Derkach SR, Khair T, Kazantseva MA, Zuev YF, Zueva OS. Ion-induced polysaccharide gelation: peculiarities of alginate egg-box association with different divalent cations. Polymers. 2023;15:1243.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nandi G, Hasnain MS, Nayak AK. Chapter 8-Polysaccharide-based polyelectrolyte complex systems in drug delivery. In tailor-made polysaccharides in drug delivery. Cambridge: Academic Press; 2023. p. 177–210.

    Book 

    Google Scholar
     

  • Khanmohammadi M, Nemati S, Ai J, Khademi F. Multipotency expression of human adipose stem cells in filament-like alginate and gelatin derivative hydrogel fabricated through visible light-initiated crosslinking. Mat Sci Eng C-Mater. 2019;103:109808.

    Article 
    CAS 

    Google Scholar
     

  • Khanmohammadi M, Sakai S, Taya M. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells. Int J Biol Macromol. 2017;97:308–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khanmohammadi M, Sakai S, Taya M. Characterization of encapsulated cells within hyaluronic acid and alginate microcapsules produced via horseradish peroxidase-catalyzed crosslinking. J Biomater Sci Polym Ed. 2019;30:295–307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi Y, Jang J, Koo H-J, Tanaka M, Lee K-H, Choi J. Alginate-chitosan hydrogel patch with beta-glucan nanoemulsion for antibacterial applications. Biotechnol Bioproc E. 2021;26:71–7.

    Article 
    CAS 

    Google Scholar
     

  • Meng L, Shao C, Cui C, Xu F, Lei J, Yang J. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association. ACS Appl Mater Inter. 2020;12:1628–39.

    Article 
    CAS 

    Google Scholar
     

  • Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, Zou Q, Ma G, Yan X. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater. 2016;28:3669–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Y, Lu J, Liu S, Zhao P, Lu G, Chen J. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym. 2014;107:57–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lohrasbi S, Mirzaei E, Karimizade A, Takallu S, Rezaei A. Collagen/cellulose nanofiber hydrogel scaffold: physical, mechanical and cell biocompatibility properties. Cellulose. 2020;27:927–40.

    Article 
    CAS 

    Google Scholar
     

  • Hu X, Li S, Peng P, Wang B, Liu W, Dong X, Yang X, Karabaliev M, Yu Q, Gao C. Prosthetic heart valves for transcatheter aortic valve replacement. BMEMat. 2023;1:e12026.

    Article 

    Google Scholar
     

  • Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2021;12:327–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan X, Lin L, Cui B, Zhao T, Mao L, Song Y, Wang X, Feng H, Qingxiang Y, Zhang J, et al. Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: More friend than foe. Pharmacol Res. 2020;159:104945.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muzzarelli RAA, El Mehtedi M, Bottegoni C, Aquili A, Gigante A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs. 2015;13:7314–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Z, Liu S, Le Y, Qin Z, He M, Xu F, Zhu Y, Zhao J, Mao C, Zheng L. An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials. 2019;218:119190.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li SS, Xia YZ, Qiu Y, Chen XN, Shi SX. Preparation and property of starch nanoparticles reinforced aldehyde-hydrazide covalently crosslinked PNIPAM hydrogels. J Appl Polym Sci. 2018;135:45761.

    Article 

    Google Scholar
     

  • Jeon O, Powell C, Solorio LD, Krebs MD, Alsberg E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release. 2011;154:258–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang Y, Mao H, Tong SC, Liu C, Yan R, Zhao L, Zhu L, Bao C. A facile and versatile approach to construct photoactivated peptide hydrogels by regulating electrostatic repulsion. ACS Nano. 2023;17:5536–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sofia SJ, Singh A, Kaplan DL. Peroxidase-catalyzed crosslinking of functionalized polyaspartic acid polymers. J Macromol Sci A. 2002;39:1151–81.

    Article 

    Google Scholar
     

  • Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33:1281–90.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang W, Xu Y, Ma J, He J, Ye H, Song J, Chen Y, Xu L. Efficient, robust, and flame-retardant electrothermal coatings based on a polyhedral oligomeric silsesquioxane-functionalized graphene/multiwalled carbon nanotube hybrid with a dually cross-linking structure. ACS Appl Mater Interfaces. 2023;15:4430–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fajardo AR, Fávaro SL, Rubira AF, Muniz EC. Dual-network hydrogels based on chemically and physically crosslinked chitosan/chondroitin sulfate. React Funct Polym. 2013;73:1662–71.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Yang B, Li M, Li J, Wan Y. Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering. Carbohydr Polym. 2020;227:115335.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliver Rev. 2018;127:46–57.

    Article 
    CAS 

    Google Scholar
     

  • Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliver Rev. 2014;78:63–76.

    Article 
    CAS 

    Google Scholar
     

  • Taccone FS, Bond O, Cavicchi FZ, Hites M. Individualized antibiotic strategies. Curr Opin Anaesthesiol. 2016;29:166–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, Wei Y, Qian Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials. 2013;34:6377–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu R, Zhang H, Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-micro Lett. 2022;14:1–46.

    Article 

    Google Scholar
     

  • Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem. 2018;146:599–612.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bajpai AK, Gupta R. Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. J Mater Sci Mater Med. 2011;22:357–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu L, Chen L. Facile design and development of nano-clustery graphene-based macromolecular protein hydrogel loaded with ciprofloxacin to antibacterial improvement for the treatment of burn wound injury. Polym Bull. 2021;79:7953–68.

    Article 

    Google Scholar
     

  • Zheng Y, Yan Y, Lin L, He Q, Hu H, Luo R, Xian D, Wu J, Shi Y, Zeng F, et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomater. 2022;142:113–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekrami A, Kalantar E. Bacterial infections in burn patients at a burn hospital in Iran. Indian J Med Res. 2007;126:541–4.

    PubMed 

    Google Scholar
     

  • Pavlović N, Bogićević IA, Zaklan D, Đanić M, Goločorbin-Kon S, Al-Salami H, Mikov M. Influence of bile acids in hydrogel pharmaceutical formulations on dissolution rate and permeation of clindamycin hydrochloride. Gels. 2022;8:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeghi S, Nourmohammadi J, Ghaee A, Soleimani N. Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. Int J Biol Macromol. 2020;147:1239–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang S, Deng J, Jin Y, Qian B, Lv W, Zhou Q, Mei E, Neisiany RE, Liu Y, You Z, et al. Breathable, antifreezing, mechanically skin-like hydrogel textile wound dressings with dual antibacterial mechanisms. Bioact Mater. 2023;21:313–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei S, Liu X, Zhou J, Zhang J, Dong A, Huang P, Wang W, Deng L. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int J Biol Macromol. 2020;155:153–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooley J, Obaidi N, Diaz V, Anselmo K, Eriksson E, Carlsson AH, Chan RK, Nuutila K. Delivery of topical gentamicin cream via platform wound device to reduce wound infection-A prospective, controlled, randomised, clinical study. Int Wound J. 2023;20:1426–35.

    Article 
    PubMed 

    Google Scholar
     

  • Iannuccelli V, Maretti E, Bellini A, Malferrari D, Ori G, Montorsi M, Bondi M, Truzzi E, Leo E. Organo-modified bentonite for gentamicin topical application: interlayer structure and in vivo skin permeation. Appl Clay Sci. 2018;158:158–68.

    Article 
    CAS 

    Google Scholar
     

  • Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin-induced nephrotoxicity: do we have a promising therapeutic approach to blunt it? Pharmacol Res. 2010;62:179–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forge A, Li L. Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hearing Res. 2000;139:97–115.

    Article 
    CAS 

    Google Scholar
     

  • Zhang J, Tan W, Li Q, Liu X, Guo Z. Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing. Mar Drugs. 2021;19:479.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eltawila AM, Hassan MN, Safaan SM, Abd El-Fattah A, Zakaria O, El-Khordagui LK, Kandil S. Local treatment of experimental mandibular osteomyelitis with an injectable biomimetic gentamicin hydrogel using a new rabbit model. J Biomed Mater Res B Appl Biomater. 2021;109:1677–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan L, Sun W, Zou Y, Xu QQ, Zeng RC, Tian J. Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies. J Mater Sci Technol. 2022;111:167–80.

    Article 
    CAS 

    Google Scholar
     

  • Sanders WE Jr, Sanders CC. Toxicity of antibacterial agents: Mechanism of action on mammalian cells. Annu Rev Pharmacol Toxicol. 1979;19:53–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubinstein E, Keynan Y. Vancomycin revisited-60 years later. Front Public Health. 2014;2:217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao CH, Chen CS, Chen YC, Jiang NE, Farn CJ, Shen YS, Hsu ML, Chang CH. Vancomycin-loaded oxidized hyaluronic acid and adipic acid dihydrazide hydrogel: bio-compatibility, drug release, antimicrobial activity, and biofilm model. J Microbiol Immunol. 2020;53:525–31.

    CAS 

    Google Scholar
     

  • Hoque J, Bhattacharjee B, Prakash RG, Paramanandham K, Haldar J. Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy. Biomacromol. 2018;19:267–78.

    Article 
    CAS 

    Google Scholar
     

  • Thapa RK, Kiick KL, Sullivan MO. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater. 2020;103:115–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathania D, Verma C, Negi P, Tyagi I, Asif M, Kumar NS, Al-Ghurabi EH, Agarwal S, Gupta VK. Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin. Carbohydr Polym. 2018;196:262–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montanari E, D’Arrigo G, Di Meo C, Virga A, Coviello T, Passariello C, Matricardi P. Chasing bacteria within the cells using levofloxacin-loaded hyaluronic acid nanohydrogels. Eur J Pharm Biopharm. 2014;87:518–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Fukushima K, Coady DJ, Engler AC, Liu S, Huang Y, Cho JS, Guo Y, Miller LS, Tan JPK, et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew Chem Int Edit. 2013;52:674–8.

    Article 
    CAS 

    Google Scholar
     

  • Tavakolian M, Munguia-Lopez JG, Valiei A, Islam MS, Kinsella JM, Tufenkji N, van de Ven TGM. Highly absorbent antibacterial and biofilm-disrupting hydrogels from cellulose for wound dressing applications. ACS Appl Mater Inter. 2020;12:39991–40001.

    Article 
    CAS 

    Google Scholar
     

  • Prasher P, Sharma M, Mudila H, Gupta G, Sharma AK, Kumar D, Bakshi HA, Negi P, Kapoor DN, Chellappan DK, et al. Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Coll Interfac Sci. 2020;35:100244.

    Article 
    CAS 

    Google Scholar
     

  • Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial hydrogels. Adv Sci. 2018;5:1700527.

    Article 

    Google Scholar
     

  • Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J. Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing. Adv Mater. 2018;30:1801100.

    Article 

    Google Scholar
     

  • Anjum S, Nawaz K, Ahmad B, Hano C, Abbasi BH. Green synthesis of biocompatible core-shell (Au-Ag) and hybrid (Au-ZnO and Ag-ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Adv. 2022;12:23845–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang JM, Sun YH, Zhao Y, Liu YL, Yao XH, Tang B, Hang RQ. Antibacterial ability and cytocompatibility of Cu-incorporated Ni-Ti-O nanopores on NiTi alloy. Rare Met. 2019;38:552–60.

    Article 
    CAS 

    Google Scholar
     

  • Wang G, Hao C, Chen C, Kuang H, Xu C, Xu L. Six-pointed star chiral cobalt superstructures with strong antibacterial activity. Small. 2022;18:2204219.

    Article 
    CAS 

    Google Scholar
     

  • Jain AS, Pawar PS, Sarkar A, Junnuthula V, Dyawanapelly S. Bionanofactories for green synthesis of silver nanoparticles: toward antimicrobial applications. Int J Mol Sci. 2021;22:11993.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Xiang J, Sun Y, Wang H, Du X, Cheng X, Du Z, Wang H. Skin-inspired nanofibrillated cellulose-reinforced hydrogels with high mechanical strength, long-term antibacterial, and self-recovery ability for wearable strain/pressure sensors. Carbohydr Polym. 2021;261:117894.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaiswal L, Shankar S, Rhim J-W, Hahm D-H. Lignin-mediated green synthesis of AgNPs in carrageenan matrix for wound dressing applications. Int J Biol Macromol. 2020;159:859–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vignesh S, Gopalakrishnan A, Poorna MR, Nair SV, Jayakumar R, Mony U. Fabrication of micropatterned alginate-gelatin and k-carrageenan hydrogels of defined shapes using simple wax mould method as a platform for stem cell/induced pluripotent stem cells (iPSC) culture. Int J Biol Macromol. 2018;112:737–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingle A, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copperbased nanoparticles: a review. Appl Microbial Biot. 2013;98:1–9.


    Google Scholar
     

  • Iakovidis I, Delimaris I, Piperakis SM. Copper and its complexes in medicine: a biochemical approach. Mol Bio Int. 2011;2011:594529.


    Google Scholar
     

  • Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C. Advances in copper complexes as anticancer agents. Che Rev. 2014;114:815–62.

    Article 
    CAS 

    Google Scholar
     

  • Qian J, Ji L, Xu W, Hou G, Wang J, Wang Y, Wang T. Copper-hydrazide coordinated multifunctional hyaluronan hydrogels for infected wound healing. ACS Appl Mater Inters. 2022;14:16018–31.

    Article 
    CAS 

    Google Scholar
     

  • Qi J, Zheng Z, Hu L, Wang H, Tang B, Lin L. Development and characterization of cannabidiol-loaded alginate copper hydrogel for repairing open bone defects in vitro. Coll Surface B. 2022;212:112339.

    Article 
    CAS 

    Google Scholar
     

  • Madzovska-Malagurski I, Vukasinovic-Sekulic M, Kostic D, Levic S. Towards antimicrobial yet bioactive Cu-alginate hydrogels. Biomed Mater. 2016;11:035015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction. Small. 2022;18:2200165.

    Article 
    CAS 

    Google Scholar
     

  • Tao B, Lin C, Qin X, Yu Y, Guo A, Li K, Tian H, Yi W, Lei D, Chen Y, et al. Fabrication of gelatin-based and Zn2+-incorporated composite hydrogel for accelerated infected wound healing. Mater Today Bio. 2022;13:100216.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mat Sci Eng C-Mater. 2014;44:278–84.

    Article 
    CAS 

    Google Scholar
     

  • Kumar VV, Anthony SP. Chapter 9-Antimicrobial studies of metal and metal oxide nanoparticles. In: Grumezescu AM, editor. Surface chemistry of nanobiomaterials. Norwich: William Andrew Publishing; 2016. p. 265–300.

    Chapter 

    Google Scholar
     

  • Rao KM, Suneetha M, Zo S, Duck KH, Han SS. One-pot synthesis of ZnO nanobelt-like structures in hyaluronan hydrogels for wound dressing applications. Carbohydr Polym. 2019;223:115124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tantiwatcharothai S, Prachayawarakorn J. Characterization of an antibacterial wound dressing from basil seed (Ocimum basilicum L.) mucilage-ZnO nanocomposite. Int J Biol Macromol. 2019;135:133–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biot. 2014;98:1001–9.

    Article 
    CAS 

    Google Scholar
     

  • Abdollahi Z, Zare EN, Salimi F, Goudarzi I, Tay FR, Makvandi P. Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: Antioxidant and antimicrobial properties and accelerated wound healing in vivo. Int J Mol Sci. 2021;22:2531.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahid F, Wang HS, Lu YS, Zhong C, Chu LQ. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol. 2017;101:690–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ejeromedoghene O, Hu YP, Oderinde O, Yao F, Akinremi C, Akinyeye R, Adewuyi S, Fu G. Transparent and photochromic poly(hydroxyethyl acrylate–acrylamide)/WO3 hydrogel with antibacterial properties against bacterial keratitis in contact lens. J Appl Polym Sci. 2022;139:51815.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Zhu J, Hu Y, Chen A, Zhou L, Gao H, Liu Y, Liu S. Study on photocatalytic antibacterial and sustained-release properties of cellulose/TiO2/β-CD composite hydrogel. J Nanomater. 2019;2019:13.

    Article 

    Google Scholar
     

  • Albalwi H, Abou El Fadl FI, Ibrahim MM, Abou Taleb MF. Antibacterial impact of acrylic acid /polyvinyl alcohol/MgO various nanocomposite hydrogels prepared by gamma radiation. Polym Bull. 2022;79:7697–709.

    Article 
    CAS 

    Google Scholar
     

  • Rasool A, Ata S, Islam A. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohydr Polym. 2019;203:423–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv X, Liu Y, Song S, Tong C, Shi X, Zhao Y, Zhang J, Hou M. Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes. Carbohydr Polym. 2019;205:312–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17:353–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-banna FS, Mahfouz ME, Leporatti S, El-Kemary M, Hanafy NAN. Chitosan as a natural copolymer with unique properties for the development of hydrogels. Appl Sci. 2019;9:2193.

    Article 
    CAS 

    Google Scholar
     

  • Sahariah P, Másson M. Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromolecules. 2017;18:3846–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ducret M, Montembault A, Josse J, Pasdeloup M, Celle A, Benchrih R, Mallein-Gerin F, Alliot-Licht B, David L, Farges J-C. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dent Mater. 2019;35:523–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Xin M, Li M, Liu W, Mao Y. Effect of the structure of chitosan quaternary phosphonium salt and chitosan quaternary ammonium salt on the antibacterial and antibiofilm activity. Int J Biol Macromol. 2023;242:124877.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He G, Ke W, Chen X, Kong Y, Zheng H, Yin Y, Cai W. Preparation and properties of quaternary ammonium chitosan-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogels. React Funct Polym. 2017;111:14–21.

    Article 
    CAS 

    Google Scholar
     

  • Deng X, Wang D, Zhang D, Sun M, Zhou L, Wang Y, Kong X, Yuan C, Zhou Q. Antibacterial quaternary ammonium chitosan/carboxymethyl starch/alginate sponges with enhanced hemostatic property for the prevention of dry socket. Front Bioeng Biotechnol. 2023;10:1083763.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Ou-Yang W, Zhang C, Wang Q, Pan X, Huang P, Zhang C, Li Y, Kong D, Wang W. Synthetic polymeric antibacterial hydrogel for methicillin-resistant staphylococcus aureus-infected wound healing: Nanoantimicrobial self-assembly, drug-and cytokine-free strategy. ACS Nano. 2020;14:12905–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Zhang Q, Huang K, Li J, Wang K, Zhang K, Tang X. Preparation and characterization of carboxymethyl cellulose containing quaternized chitosan for potential drug carrier. Int J Biol Macromol. 2020;154:1392–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zidan TA, Abdelhamid AE, Zaki EG. N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions. Int J Biol Macromol. 2020;158:32–42.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Dang Q, Liu C, Yan J, Cha D, Liang S, Li X, Fan B. Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing. Int J Biol Macromol. 2017;102:457–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trad M, Miled W, Benltoufa S, Boughattas A, Benslama R, Fayala F, Bakhrouf A. Chitosan hydrogel-coated cotton fabric: Antibacterial, pH-responsiveness, and physical properties. J Appl Polym Sci. 2018;135:46645.

    Article 

    Google Scholar
     

  • He XY, Sun A, Li T, Qian YJ, Qian H, Ling YF, Zhang LH, Liu QY, Peng T, Qian Z. Mussel-inspired antimicrobial gelatin/chitosan tissue adhesive rapidly activated in situ by H2O2/ascorbic acid for infected wound closure. Carbohydr Polym. 2020;247:116692.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahooti B, Khorram M, Karimi G, Mohammadi A, Emami A. Modeling and optimization of antibacterial activity of the chitosan-based hydrogel films using central composite design. J Biomed Mater Res A. 2016;104:2544–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sautrot-Ba P, Razza N, Breloy L, Andaloussi SA, Chiappone A, Sangermano M, Hélary C, Belbekhouche S, Coradin T, Versace DL. Photoinduced chitosan-PEG hydrogels with long-term antibacterial properties. J Mater Chem B. 2019;7:6526–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang L, Zhu Z, Wu D, Gan W, Zhu S, Li W, Tian J, Li L, Zhou C, Lu L. Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydr Polym. 2019;225:115110.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahid F, Hu XH, Chu LQ, Jia SR, Xie YY, Zhong C. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int J Biol Macromol. 2019;122:380–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khattak S, Qin XT, Huang LH, Xie YY, Jia SR, Zhong C. Preparation and characterization of antibacterial bacterial cellulose/chitosan hydrogels impregnated with silver sulfadiazine. Int J Biol Macromol. 2021;189:483–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang X, Deng L, Yi L, Ruan CQ, Zeng K. A facile method for preparation of green and antibacterial hydrogel based on chitosan and water-soluble 2,3-dialdehyde cellulose. Cellulose. 2021;28:6403–16.

    Article 
    CAS 

    Google Scholar
     

  • Wu T, Huang J, Jiang Y, Hu Y, Ye X, Liu D, Chen J. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem. 2018;240:361–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagher Z, Ehterami A, Safdel MH, Khastar H, Semiari H, Asefnejad A, Davachi SM, Mirzaii M, Salehi M. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Tec. 2020;55:101379.

    Article 
    CAS 

    Google Scholar
     

  • Ling Z, Chen Z, Deng J, Wang Y, Yuan B, Yang X, Lin H, Cao J, Zhu X, Zhang X. A novel self-healing polydopamine-functionalized chitosan-arginine hydrogel with enhanced angiogenic and antibacterial activities for accelerating skin wound healing. Chem Eng J. 2021;420:130302.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Sun GH, Tian MP, Wang YN, Qu CC, Cheng XJ, Feng C, Chen XG. Mussel-inspired antibacterial polydopamine/chitosan/temperature-responsive hydrogels for rapid hemostasis. Int J Biol Macromol. 2019;138:321–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan X, Zhao L, Ling Q, Gu H. Tough, self-adhesive, antibacterial, and recyclable supramolecular double network flexible hydrogel sensor based on PVA/chitosan/cyclodextrin. Ind Eng Chem Res. 2022;61:3620–35.

    Article 
    CAS 

    Google Scholar
     

  • Feng X, Hou X, Cui C, Sun S, Sadik S, Wu S, Zhou F. Mechanical and antibacterial properties of tannic acid-encapsulated carboxymethyl chitosan/polyvinyl alcohol hydrogels. Eng Regen. 2021;2:57–62.


    Google Scholar
     

  • Wang R, Li J, Chen W, Xu T, Yun S, Xu Z, Xu Z, Sato T, Chi B, Xu H. A biomimetic mussel-inspired ε-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv Funct Mater. 2017;27:1604894.

    Article 

    Google Scholar
     

  • Zou YJ, He SS, Du JZ. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J Polym Sci. 2018;36:1239–50.

    Article 
    CAS 

    Google Scholar
     

  • Cai L, Liu S, Guo J, Jia YG. Polypeptide-based self-healing hydrogels: design and biomedical applications. Acta Biomater. 2020;113:84–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Huang S, Li Y, Zhou C. Recent advances in epsilon-poly-L-lysine and L-lysine-based dendrimer synthesis, modification, and biomedical applications. Front Chem. 2021;9: 659304.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun A, He X, Li L, Li T, Liu Q, Zhou X, Ji X, Li W, Qian Z. An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration. NPG Asia Mater. 2020;12:25.

    Article 
    CAS 

    Google Scholar
     

  • Wei R, Chen T, Wang Y, Xu Q, Feng B, Weng J, Peng W, Wang J. By endowing polyglutamic acid/polylysine composite hydrogel with super intrinsic characteristics to enhance its wound repair potential. Macromol Biosci. 2021;21:2000367.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Liu X, Ren Y, Wang P, Pu Y, Yang R, Wang X, Tan X, Ye Z, Maurizot V, et al. Mussel-inspired dual-cross-linking hyaluronic acid/ε-polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl Mater Inter. 2020;12:27876–88.

    Article 
    CAS 

    Google Scholar
     

  • Zhou J, Liu Y, Liu X, Wan J, Zuo S, Pan T, Liu Y, Sun F, Gao M, Yu X, et al. Hyaluronic acid-based dual network hydrogel with sustained release of platelet-rich plasma as a diabetic wound dressing. Carbohydr Polym. 2023;314:120924.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milović NM, Wang J, Lewis K, Klibanov AM. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng. 2005;90:715–22.

    Article 
    PubMed 

    Google Scholar
     

  • Meng Q, Li Y, Shen C. Antibacterial coatings of biomedical surfaces by polydextran aldehyde/polyethylenimine nanofibers. ACS Appl Bio Mater. 2019;2:562–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren J, Kong R, Gao Y, Zhang L, Zhu J. Bioinspired adhesive coatings from polyethylenimine and tannic acid complexes exhibiting antifogging, self-cleaning, and antibacterial capabilities. J Colloid Interf Sci. 2021;602:406–14.

    Article 
    CAS 

    Google Scholar
     

  • Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019;13:10279–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahid F, Bai H, Wang FP, Xie YY, Zhang YW, Chu LQ, Jia SR, Zhong C. Facile synthesis of bacterial cellulose and polyethyleneimine based hybrid hydrogels for antibacterial applications. Cellulose. 2020;27:369–83.

    Article 
    CAS 

    Google Scholar
     

  • Aoki W, Kuroda K, Ueda M. Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng. 2012;114:365–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou W, Bai T, Wang L, Cheng Y, Xia D, Yu S, Zheng Y. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater. 2023;20:64–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu K, Zhang F, Wei Y, Hu Q, Luo Q, Chen C, Wang J, Yang L, Luo R, Wang Y. Dressing blood-contacting materials by a stable hydrogel coating with embedded antimicrobial peptides for robust antibacterial and antithrombus properties. ACS Appl Mater Inter. 2021;13:38947–58.

    Article 
    CAS 

    Google Scholar
     

  • Obuobi S, Tay HK-L, Tram NDT, Selvarajan V, Khara JS, Wang Y, Ee PLR. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. J Controll Release. 2019;313:120–30.

    Article 
    CAS 

    Google Scholar
     

  • Wei S, Xu P, Yao Z, Cui X, Lei X, Li L, Dong Y, Zhu W, Guo R, Cheng B. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater. 2021;124:205–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yang ZH, Zhu H, Qiu HG, Li SJ, Yang KF, Xu J. Antibacterial self-fused supramolecular polymer hydrogel for infected wound healing. Mater Res Express. 2022;9:035401.

    Article 

    Google Scholar
     

  • Alaiya MA, Odeniyi MA. Utilisation of mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: a review. Futur J Pharm Sci. 2023;9:29.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorman HJD, Deans SG. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J Agr Food Chem. 2015;63:3805–22.

    Article 
    CAS 

    Google Scholar
     

  • Inouye S, Takizawa T, Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemoth. 2001;47:565–73.

    Article 
    CAS 

    Google Scholar
     

  • Singh P, Verma C, Mukhopadhyay S, Gupta A, Gupta B. Preparation of thyme oil loaded κ-carrageenan-polyethylene glycol hydrogel membranes as wound care system. Int J Pharm. 2022;618:121661.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almasian A, Najafi F, Eftekhari M, Shams Ardekani MR, Sharifzadeh M, Khanavi M. Preparation of polyurethane/pluronic F127 nanofibers containing peppermint extract loaded gelatin nanoparticles for diabetic wounds healing: characterization, in vitro, and in vivo studies. Evid-based Complement Altern Med. 2021;2021:6646702.

    Article 

    Google Scholar
     

  • Carpa R, Remizovschi A, Culda CA, Butiuc-Keul AL. Inherent and composite hydrogels as promising materials to limit antimicrobial resistance. Gels. 2022;8:70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yahya E, Abdulsamad MA. In-vitro antibacterial activity of carbopol-essential oils hydrogels. J Appl Sci Process Eng. 2020;7:564–71.

    Article 
    CAS 

    Google Scholar
     

  • Sood N, Bhardwaj A, Mehta S, Mehta A. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 2016;23:748–70.

    Article 
    CAS 

    Google Scholar
     

  • Xiang Y, Liu C, Ma S, Wang X, Zhu L, Bao C. Stimuli-responsive peptide self-assembly to construct hydrogels with actuation and shape memory behaviors. Adv Funct Mater. 2023;2023:2300416.

    Article 

    Google Scholar
     

  • Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials. 2022;280:121249.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Li B, Lv D, Li W, Lu Y, Luo G. Biomaterials releasing drug responsively to promote wound healing via regulation of pathological microenvironment. Adv Drug Deliv Rev. 2023;196:114778.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6:4279–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Jin Y, Wang J, Wang Y, Jiang W, Dai H, Pang S, Lei L, Ji J, Wang B. Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. Nanoscale. 2018;10:20946–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu B, Li J, Zhang Z, Roland JD, Lee BP. pH responsive antibacterial hydrogel utilizing catechol–boronate complexation chemistry. Chem Eng J. 2022;441:135808.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan MU, Iqbal I, Ansari MN, Razak SI, Raza MA, Sajjad A, Jabeen F, Riduan Mohamad M, Jusoh N. Development of antibacterial, degradable and pH-responsive chitosan/guar gum/polyvinyl alcohol blended hydrogels for wound dressing. Molecules. 2021;26:5937.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ilgin P, Ozay H, Ozay O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res. 2020;27:251.

    Article 
    CAS 

    Google Scholar
     

  • Wei H, Cheng SX, Zhang XZ, Zhuo RX. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Prog Polym Sci. 2009;34:893–910.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Liang Y, He J, Zhang H, Guo B. Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem Mater. 2020;32:9937–53.

    Article 
    CAS 

    Google Scholar
     

  • Al-Rajabi MM, Teow YH. Synthesis of thermoresponsive composite hydrogel from Pluronic F127 reinforced by oil palm empty fruit bunches-extracted cellulose for silver sulfadiazine drug delivery. Sustain Chem Pharm. 2023;31:100939.

    Article 
    CAS 

    Google Scholar
     

  • Zuo YM, Yan X, Xue J, Guo LY, Fang WW, Sun TC, Li M, Zha Z, Yu Q, Wang Y, et al. Enzyme-responsive Ag nanoparticle assemblies in targeting antibacterial against methicillin-resistant staphylococcus aureus. ACS Appl Mater Inter. 2020;12:4333–42.

    Article 
    CAS 

    Google Scholar
     

  • Gao Z, Golland B, Tronci G, Thornton PD. A redox-responsive hyaluronic acid-based hydrogel for chronic wound management. J Mater Chem B. 2019;7:7494–501.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Li F, Guo Z, Xiao Y, Zhang Y, Sun X, Zhe T, Cao Y, Wang L, Lu Q, et al. Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections. Chem Eng J. 2020;382:122990.

    Article 
    CAS 

    Google Scholar
     

  • Cao C, Yang N, Zhao Y, Yang D, Hu Y, Yang D, Song X, Wang W, Dong X. Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy. Nano Today. 2021;39:101165.

    Article 
    CAS 

    Google Scholar
     

  • Yang D, Lv X, Xue L, Yang N, Hu Y, Weng L, Fu N, Wang L, Dong X. A lipase-responsive antifungal nanoplatform for synergistic photodynamic/photothermal/pharmaco-therapy of azole-resistant Candida albicans infections. Chem Commun. 2019;55:15145–8.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Liu X, Tan L, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, Yeung KWK, et al. Zinc-doped prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nat Commun. 2019;10:4490.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang WN, Pei P, Chu ZY, Chen BJ, Qian HS, Zha ZB, Zhou W, Liu T, Shao M, Wang H. Bi2S3 coated Au nanorods for enhanced photodynamic and photothermal antibacterial activities under NIR light. Chem Eng J. 2020;397:125488.

    Article 
    CAS 

    Google Scholar
     

  • Li Z, Huang H, Tang S, Li Y, Yu XF, Wang H, Li P, Sun Z, Zhang H, Liu C, et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials. 2016;74:144–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Wang Y, Yang J, Liu W. Bacteria activated-macrophage membrane-coated tough nanocomposite hydrogel with targeted photothermal antibacterial ability for infected wound healing. Chem Eng J. 2021;420:127638.

    Article 
    CAS 

    Google Scholar
     

  • Han J, Feng Y, Liu Z, Chen Q, Shen Y, Feng F, Liu L, Zhong M, Zhai Y, Bockstaller M, et al. Degradable GO-Nanocomposite hydrogels with synergistic photothermal and antibacterial response. Polymers. 2021;230:124018.

    Article 
    CAS 

    Google Scholar
     

  • Liang Y, Zhao X, Hu T, Chen B, Yin Z, Ma PX, Guo B. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small. 2019;15:1900046.

    Article 

    Google Scholar
     

  • Liu T, Zhang M, Liu W, Zeng X, Song X, Yang X, Zhang X, Feng J. Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano. 2018;12:3917–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Y, Li P, Zhu C, Ning N, Zhang S, Vancso GJ. Multifunctional and recyclable photothermally responsive cryogels as efficient platforms for wound healing. Adv Funct Mater. 2019;29:1904402.

    Article 

    Google Scholar
     

  • Guo D, Zhu L, Huang Z, Zhou H, Ge Y, Ma W, Wu J, Zhang X, Zhou X, Zhang Y. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013;34:7884–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang Q, Wu K, Jiang Z, Shi Z, Si Z, Wang Q, Cao Y, Hou R, Zhu Y. A polyaniline nanoparticles crosslinked hydrogel with excellent photothermal antibacterial and mechanical properties for wound dressing. Macromol Biosci. 2022;22:2100386.

    Article 
    CAS 

    Google Scholar
     

  • Jia Q, Song Q, Li P, Huang W. Rejuvenated photodynamic therapy for bacterial infections. Adv Healthc Mater. 2019;8:1900608.

    Article 

    Google Scholar
     

  • Xie X, Mao C, Liu X, Zhang Y, Cui Z, Yang X, Yeung KWK, Pan H, Chu PK, Wu S. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl Mater Inter. 2017;9:26417–28.

    Article 
    CAS 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Leng J, Li K, Xu K, Lin C, Yuan Z, Zhang R, Wang D, Tao B, Huang TJ, et al. A multifunctional hydrogel coating to direct fibroblast activation and infected wound healing via simultaneously controllable photobiomodulation and photodynamic therapies. Biomaterials. 2021;278:121164.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang H, Zou Q, Xing R, Jiao T, Yan X. An injectable dipeptide-fullerene supramolecular hydrogel for photodynamic antibacterial therapy. J Mater Chem B. 2018;6:7335–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ragàs X, Sánchez-García D, Ruiz-González R, Dai T, Agut M, Hamblin MR, Nonell S. Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy. J Med Chem. 2010;53:7796–803.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayat F, Karimi AR. Design of photodynamic chitosan hydrogels bearing phthalocyanine-colistin conjugate as an antibacterial agent. Int J Biol Macromol. 2019;129:927–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao C, Xiang Y, Liu X, Zheng Y, Yeung KWK, Cui Z, Yang X, Li Z, Liang Y, Zhu S, et al. Local photothermal/photodynamic synergistic therapy by disrupting bacterial membrane to accelerate reactive oxygen species permeation and protein leakage. ACS Appl Mater Inter. 2019;11:17902–14.

    Article 
    CAS 

    Google Scholar
     

  • Cui Q, Yuan H, Bao X, Ma G, Wu M, Xing C. Synergistic photodynamic and photothermal antibacterial therapy based on a conjugated polymer nanoparticle-doped hydrogel. ACS Appl Bio Mater. 2020;3:4436–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yao H, Zu Y, Yin W. Biodegradable MoOx@ MB incorporated hydrogel as light-activated dressing for rapid and safe bacteria eradication and wound healing. RSC Adv. 2022;12:8862–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Zhang G, Zhang H, Liu X, Shi J, Shi H, Yao X, Chu PK, Zhang X. A bifunctional hydrogel incorporated with CuS@MoS2 microspheres for disinfection and improved wound healing. Chem Eng J. 2020;382:122849.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Wu H, Li P, Liu W, Zhang Y, Dong A. Dual-light-triggered in situ structure and function regulation of injectable hydrogels for high-efficient anti-infective wound therapy. Adv Healthc Mater. 2022;11:2101722.

    Article 
    CAS 

    Google Scholar
     

  • Xiang Y, Mao C, Liu X, Cui Z, Jing D, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, et al. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small. 2019;15:1900322.

    Article 

    Google Scholar
     

  • Wei T, Yu Q, Chen H. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv Healthc Mater. 2019;8:1801381.

    Article 
    CAS 

    Google Scholar
     

  • Monte JP, Fontes A, Santos BS, Pereira GAL, Pereira G. Recent advances in hydroxyapatite/polymer/silver nanoparticles scaffolds with antimicrobial activity for bone regeneration. Mater Lett. 2023;338:134027.

    Article 
    CAS 

    Google Scholar
     

  • Yu N, Wang X, Qiu L, Cai T, Jiang C, Sun Y, Li Y, Peng H, Xiong H. Bacteria-triggered hyaluronan/AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application. Chem Eng J. 2020;380:122582.

    Article 
    CAS 

    Google Scholar
     

  • Shome A, Dutta S, Maiti S, Das PK. In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: development of antibacterial soft nanocomposites. Soft Matter. 2011;7:3011–22.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Fan J, Lv M, She K, Sun J, Lu Q, Han C, Ding S, Zhao S, Wang G, et al. Photocrosslinking silver nanoparticles-aloe vera-silk fibroin composite hydrogel for treatment of full-thickness cutaneous wounds. Regen Biomater. 2021;8:rbab048.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anjum S, Gupta A, Sharma D, Gautam D, Bhan S, Sharma A, Kapil A, Gupta B. Development of novel wound care systems based on nanosilver nanohydrogels of polymethacrylic acid with Aloe vera and curcumin. Mat Sci Eng C. 2016;64:157–66.

    Article 
    CAS 

    Google Scholar
     

  • Masood N, Ahmed R, Tariq M, Ahmed Z, Masoud MS, Ali I, Asghar R, Andleeb A, Hasan A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. J Int J Pharmaceut. 2019;559:23–36.

    Article 
    CAS 

    Google Scholar
     

  • Ferfera-Harrar H, Berdous D, Benhalima T. Hydrogel nanocomposites based on chitosan-g-polyacrylamide and silver nanoparticles synthesized using Curcuma longa for antibacterial applications. Polym Bull. 2018;75:2819–46.

    Article 
    CAS 

    Google Scholar
     

  • Yan T, Kong S, Ouyang Q, Li C, Hou T, Chen Y, Li S. Chitosan-gentamicin conjugate hydrogel promoting skin scald repair. Mar Drugs. 2020;18:233.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gezgin Y, Kazan A, Ulucan F, Yesil-Celiktas O. Antimicrobial activity of propolis and gentamycin against methicillin-resistant Staphylococcus aureus in a 3D thermo-sensitive hydrogel. Ind Crop Prod. 2019;139:111588.

    Article 
    CAS 

    Google Scholar
     

  • Yang C, Dawulieti J, Zhang K, Cheng C, Zhao Y, Hu H, Li M, Zhang M, Chen L, Leong KW, et al. An injectable antibiotic hydrogel that scavenges proinflammatory factors for the treatment of severe abdominal trauma. Adv Funct Mater. 2022;32:2111698.

    Article 
    CAS 

    Google Scholar
     

  • Sun M, Zhu C, Long J, Lu C, Pan X, Wu C. PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus-induced skin infections. Drug Deliv. 2020;27:632–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paradiso P, Serro AP, Saramago B, Colaço R, Chauhan A. Controlled release of antibiotics from vitamin E-loaded silicone-hydrogel contact lenses. J Pharm Sci. 2016;105:1164–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salimi E, Nigje AK. Investigating the antibacterial activity of carboxymethyl cellulose films treated with novel Ag@GO decorated SiO2 nanohybrids. Carbohydr Polym. 2022;298:120077.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Wu B, Zhou Y, Zhou F, Liu W, Wang Z. Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev. 2020;49:3605–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Wang H, Huang W, Peng K, Shi R, Tian W, Yuan J, Lin L, Yao W, Ma X. A natural polymer-based hydrogel with shape controllability and high toughness and its application to efficient osteochondral regeneration. Mater Horizons. 2023. https://doi.org/10.1039/d3mh00544e.

    Article 

    Google Scholar
     

  • Chen Z, Yao J, Zhao J, Wang S. Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis. Int J Biol Macromol. 2023;225:1235–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaker LM, Abdulhadi S, Al-Azzawi WK, Alamiery A, Takriff MS, Isahak WNRW. Colorless poly (vinyl pyrrolidone) hydrogel contact lenses synergized with silver nanoparticles. J Opt. 2023;2023:1–10.


    Google Scholar
     

  • Miao J, Wu X, Fang Y, Zeng M, Huang Z, Ouyang M, Wang R. Multifunctional hydrogel coatings with high antimicrobial loading efficiency and pH-responsive properties for urinary catheter applications. J Mat Chem B. 2023;11:3373–86.

    Article 
    CAS 

    Google Scholar
     

  • Kim J, Hlaing SP, Lee J, Kwak D, Kim H, Saparbayeva A, Yoon I-S, Im E, Jung Y, Yoo J-W. pH-sustaining nanostructured hydroxyapatite/alginate composite hydrogel for gastric protection and intestinal release of Lactobacillus rhamnosus GG. Bioeng Transl Med. 2023;8:e10527.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie X, Wei J, Zhang B, Xiong W, He Z, Zhang Y, Gao C, Zhao Y, Liu B. A self-assembled bilayer polypeptide-engineered hydrogel for spatiotemporal modulation of bactericidal and anti-inflammation process in osteomyelitis treatment. J Nanobiotechnol. 2022;20:416.

    Article 
    CAS 

    Google Scholar
     

  • Dugassa J, Shukuri N. Review on antibiotic resistance and its mechanism of development. J Health Med Nursing. 2017;1:1–17.


    Google Scholar
     

  • Ibelli T, Templeton S, Levi-Polyachenko N. Progress on utilizing hyperthermia for mitigating bacterial infections. Int J Hyperther. 2018;34:144–56.

    Article 

    Google Scholar