Nanotechnology

Application of biomedical materials in the diagnosis and treatment of myocardial infarction | Journal of Nanobiotechnology


  • W.H.O Cardiovascular diseases (CVDs). https://www.whoint/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) Accessed Oct 2022

  • Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al. Heart Disease and Stroke Statistics-2021 update: a Report from the American Heart Association. Circulation. 2021;143:e254–e743.

    Article 
    PubMed 

    Google Scholar
     

  • Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD. Fourth Universal Definition of myocardial infarction (2018). Circulation. 2018;138:e618–51.

    Article 
    PubMed 

    Google Scholar
     

  • Mohan JC, Narula J. New universal definition of myocardial infarction: global implications, applicability, and need for flexibility. Glob Heart. 2012;7:377–80.

    Article 
    PubMed 

    Google Scholar
     

  • Harrington DH, Stueben F, Lenahan CM. ST-Elevation myocardial infarction and Non-ST-Elevation myocardial infarction: Medical and Surgical Interventions. Crit Care Nurs Clin North Am. 2019;31:49–64.

    Article 
    PubMed 

    Google Scholar
     

  • Mitsis A, Gragnano F. Myocardial infarction with and without ST-segment elevation: a contemporary reappraisal of similarities and differences. Curr Cardiol Rev. 2021;17:e230421189013.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165.

    Article 
    PubMed 

    Google Scholar
     

  • Ali MR, Salim Hossain M, Islam MA, Saiful Islam Arman M, Sarwar Raju G, Dasgupta P, Noshin TF. Aspect of thrombolytic therapy: a review. ScientificWorldJournal. 2014;2014:586510.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saleh M, Ambrose JA. Understanding myocardial infarction. F1000Res 2018, 7.

  • Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389:197–210.

    Article 
    PubMed 

    Google Scholar
     

  • Komosa A, Lesiak M, Siniawski A, Mularek-Kubzdela T, Grajek S. Significance of antiplatelet therapy in emergency myocardial infarction treatment. Postepy Kardiol Interwencyjnej. 2014;10:32–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang K, Davies J, Keeble T, Mielewczik M, Kaprielian R, Malik IS, et al. Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial. Lancet. 2018;391:31–40.

    Article 
    PubMed 

    Google Scholar
     

  • Lu L, Liu M, Sun R, Zheng Y, Zhang P. Myocardial infarction: symptoms and treatments. Cell Biochem Biophys. 2015;72:865–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim MS, Dean LS. In-stent restenosis. Cardiovasc Ther. 2011;29:190–8.

    Article 
    PubMed 

    Google Scholar
     

  • Buccheri D, Piraino D, Andolina G, Cortese B. Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J Thorac Dis. 2016;8:E1150–e1162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Tanneur C, Mongardon N, Haouache H, Allouche N, Andrivet P, Auvergne L, Houballah R, Radu C, Dhonneur G. Acute lower limb ischemia after coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2015;29:1624–6.

    Article 
    PubMed 

    Google Scholar
     

  • Schimmer C, Reents W, Berneder S, Eigel P, Sezer O, Scheld H, Sahraoui K, Gansera B, Deppert O, Rubio A, et al. Prevention of sternal dehiscence and infection in high-risk patients: a prospective randomized multicenter trial. Ann Thorac Surg. 2008;86:1897–904.

    Article 
    PubMed 

    Google Scholar
     

  • Rydén L, Sartipy U, Evans M, Holzmann MJ. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation. 2014;130:2005–11.

    Article 
    PubMed 

    Google Scholar
     

  • Montrief T, Koyfman A, Long B. Coronary artery bypass graft surgery complications: a review for emergency clinicians. Am J Emerg Med. 2018;36:2289–97.

    Article 
    PubMed 

    Google Scholar
     

  • Shaban A, Leira EC. Neurologic complications of heart surgery. Handb Clin Neurol. 2021;177:65–75.

    Article 
    PubMed 

    Google Scholar
     

  • Gong FF, Vaitenas I, Malaisrie SC, Maganti K. Mechanical complications of Acute myocardial infarction: a review. JAMA Cardiol. 2021;6:341–9.

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen PD, de Bakker DEM, Bakkers J. Cardiac regenerative capacity: an evolutionary afterthought? Cell Mol Life Sci. 2021;78:5107–22.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, Hausenloy DJ. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Marinković G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S, Schiopu A. S100A9 links inflammation and repair in myocardial infarction. Circ Res. 2020;127:664–76.

    Article 
    PubMed 

    Google Scholar
     

  • Marin E, Boschetto F, Pezzotti G. Biomaterials and biocompatibility: an historical overview. J Biomed Mater Res A. 2020;108:1617–33.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in Stimuli-Responsive Biomaterials for treating Cardiovascular and Cerebrovascular Diseases. Small. 2022;18:e2200291.

    Article 
    PubMed 

    Google Scholar
     

  • Schotman MJG, Dankers PYW. Factors influencing Retention of Injected Biomaterials to treat myocardial infarction. Adv Mater Interfaces 2022, 9.

  • Hernandez JL, Woodrow KA. Medical applications of porous biomaterials: features of porosity and tissue-specific implications for Biocompatibility. Adv Healthc Mater 2022, 11.

  • Ahmed U, Ahmed R, Masoud MS, Tariq M, Ashfaq UA, Augustine R, Hasan A. Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomed Mater. 2021;16:042003.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shirazi RN, Islam S, Weafer FM, Whyte W, Varela CE, Villanyi A, Ronan W, McHugh P, Roche ET. Multiscale Experimental and Computational modeling approaches to characterize therapy delivery to the heart from an Implantable Epicardial Biomaterial Reservoir. Adv Healthc Mater. 2019;8:e1900228.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Li G, Yang L, Luo R, Guo G. Development of innovative Biomaterials and Devices for the treatment of Cardiovascular Diseases. Adv Mater 2022:e2201971.

  • Yalta K, Yilmaz MB, Yalta T, Palabiyik O, Taylan G, Zorkun C. Late Versus Early myocardial remodeling after Acute myocardial infarction: a comparative review on mechanistic insights and clinical implications. J Cardiovasc Pharmacol Ther. 2020;25:15–26.

    Article 
    PubMed 

    Google Scholar
     

  • Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121:2437–45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva AC, Pereira C, Fonseca A, Pinto-do-Ó P, Nascimento DS. Bearing my heart: the role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front Cell Dev Biol. 2020;8:621644.

    Article 
    PubMed 

    Google Scholar
     

  • Vazir A, Fox K, Westaby J, Evans MJ, Westaby S. Can we remove scar and fibrosis from adult human myocardium? Eur Heart J. 2019;40:960–6.

    Article 
    PubMed 

    Google Scholar
     

  • Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol. 2015;5:1841–75.

    Article 
    PubMed 

    Google Scholar
     

  • Li H, Bao M, Nie Y. Extracellular matrix-based biomaterials for cardiac regeneration and repair. Heart Fail Rev. 2021;26:1231–48.

    Article 
    PubMed 

    Google Scholar
     

  • Krziminski C, Kammann S, Hansmann J, Edenhofer F, Dandekar G, Walles H, Leistner M. Development of a bioreactor system for pre-endothelialized cardiac patch generation with enhanced viscoelastic properties by combined collagen I compression and stromal cell culture. J Tissue Eng Regen Med. 2020;14:1749–62.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Roura S, Gálvez-Montón C, Bayes-Genis A. Fibrin, the preferred scaffold for cell transplantation after myocardial infarction? An old molecule with a new life. J Tissue Eng Regen Med. 2017;11:2304–13.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lv J, Liu W, Shi G, Zhu F, He X, Zhu Z, Chen H. Human cardiac extracellular matrix-chitosan-gelatin composite scaffold and its endothelialization. Exp Ther Med. 2020;19:1225–34.

    PubMed 
    CAS 

    Google Scholar
     

  • Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C. Printability, durability, contractility and vascular network formation in 3D Bioprinted Cardiac endothelial cells using alginate-gelatin hydrogels. Front Bioeng Biotechnol. 2021;9:636257.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin J, Choi S, Kim JH, Cho JH, Jin Y, Kim S, Min S, Kim SK, Choi D, Cho SW. Tissue Tapes-phenolic hyaluronic acid hydrogel patches for off-the-Shelf Therapy. Adv Funct Mater 2019, 29.

  • Mohammadi Nasr S, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, Webster TJ. Biodegradable nanopolymers in Cardiac tissue Engineering: from Concept towards Nanomedicine. Int J Nanomedicine. 2020;15:4205–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanjanizadeh Ezazi N, Ajdary R, Correia A, Mäkilä E, Salonen J, Kemell M, Hirvonen J, Rojas OJ, Ruskoaho HJ, Santos HA. Fabrication and characterization of drug-loaded conductive poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for myocardial infarction applications. ACS Appl Mater Interfaces. 2020;12:6899–909.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rai R, Tallawi M, Frati C, Falco A, Gervasi A, Quaini F, Roether JA, Hochburger T, Schubert DW, Seik L, et al. Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application. Adv Healthc Mater. 2015;4:2012–25.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Silvestri A, Sartori S, Boffito M, Mattu C, Di Rienzo AM, Boccafoschi F, Ciardelli G. Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes. J Biomed Mater Res B Appl Biomater. 2014;102:1002–13.

    Article 
    PubMed 

    Google Scholar
     

  • Yan C, Ren Y, Sun X, Jin L, Liu X, Chen H, Wang K, Yu M, Zhao Y. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering. J Photochem Photobiol B. 2020;202:111680.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pushp P, Bhaskar R, Kelkar S, Sharma N, Pathak D, Gupta MK. Plasticized poly(vinylalcohol) and poly(vinylpyrrolidone) based patches with tunable mechanical properties for cardiac tissue engineering applications. Biotechnol Bioeng. 2021;118:2312–25.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Reis LA, Chiu LL, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med. 2016;10:11–28.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McMahan S, Taylor A, Copeland KM, Pan Z, Liao J, Hong Y. Current advances in biodegradable synthetic polymer based cardiac patches. J Biomed Mater Res A. 2020;108:972–83.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bejleri D, Davis ME. Decellularized extracellular matrix materials for Cardiac Repair and Regeneration. Adv Healthc Mater. 2019;8:e1801217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kc P, Hong Y, Zhang G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater. 2019;6:185–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature. 2017;547:179–84.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Huang K, Ozpinar EW, Su T, Tang J, Shen D, Qiao L, Hu S, Li Z, Liang H, Mathews K et al. An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Sci Transl Med 2020, 12.

  • Chen H, Fan L, Peng N, Yin Y, Mu D, Wang J, Meng R, Xie J. Galunisertib-Loaded gelatin methacryloyl hydrogel Microneedle Patch for Cardiac Repair after myocardial infarction. ACS Appl Mater Interfaces. 2022;14:40491–500.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev. 2021;171:240–56.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Z, Chen Y, Hedenqvist MS, Chen C, Cai C, Li H, Liu H, Fu J. Multifunctional conductive hydrogels and their applications as smart wearable devices. J Mater Chem B. 2021;9:2561–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang Y, Wang Y, Li Q, Yu C, Chu W. Natural polymer-based Stimuli-responsive hydrogels. Curr Med Chem. 2020;27:2631–57.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Maity S, Parshi N, Prodhan C, Chaudhuri K, Ganguly J. Characterization of a fluorescent hydrogel synthesized using chitosan, polyvinyl alcohol and 9-anthraldehyde for the selective detection and discrimination of trace fe(3+) and Fe(2+) in water for live-cell imaging. Carbohydr Polym. 2018;193:119–28.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liang S, Zhang Y, Wang H, Xu Z, Chen J, Bao R, Tan B, Cui Y, Fan G, Wang W, et al. Paintable and rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches. Adv Mater. 2018;30:e1704235.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhu D, Wei Y, Wu Y, Cui W, Liuqin L, Fan G, Yang Q, Wang Z, Xu Z, et al. A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model. Acta Biomater. 2019;86:223–34.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, Zhao N, Xu FJ, Wang C. Natural Melanin/Alginate hydrogels achieve Cardiac Repair through ROS Scavenging and Macrophage polarization. Adv Sci (Weinh). 2021;8:e2100505.

    Article 
    PubMed 

    Google Scholar
     

  • Lee WY, Wei HJ, Lin WW, Yeh YC, Hwang SM, Wang JJ, Tsai MS, Chang Y, Sung HW. Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials. 2011;32:5558–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Henning RJ, Khan A, Jimenez E. Chitosan hydrogels significantly limit left ventricular infarction and remodeling and preserve myocardial contractility. J Surg Res. 2016;201:490–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan C, Shi J, Zhuang Y, Zhang L, Huang L, Yang W, Chen B, Chen Y, Xiao Z, Shen H, et al. Myocardial-infarction-responsive Smart Hydrogels Targeting Matrix Metalloproteinase for On-Demand growth factor delivery. Adv Mater. 2019;31:e1902900.

    Article 
    PubMed 

    Google Scholar
     

  • Ding J, Yao Y, Li J, Duan Y, Nakkala JR, Feng X, Cao W, Wang Y, Hong L, Shen L, et al. A reactive oxygen species scavenging and O(2) Generating Injectable Hydrogel for myocardial infarction treatment in vivo. Small. 2020;16:e2005038.

    Article 
    PubMed 

    Google Scholar
     

  • Sylvester CB, Pugazenthi A, Grande-Allen KJ, Ghanta RK. Cell-Laden Bioactive Poly(ethylene glycol) hydrogels for studying mesenchymal stem cell behavior in myocardial infarct-stiffness microenvironments. Cardiovasc Eng Technol. 2021;12:183–99.

    Article 
    PubMed 

    Google Scholar
     

  • Chen M, Wang Y, Zhao X, Zhang J, Peng Y, Bai J, Li S, Han D, Ren S, Qin K, et al. Target-responsive DNA hydrogel with microfluidic chip smart readout for quantitative point-of-care testing of creatine kinase MB. Talanta. 2022;243:123338.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karam JP, Muscari C, Sindji L, Bastiat G, Bonafè F, Venier-Julienne MC, Montero-Menei NC. Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering. J Control Release. 2014;192:82–94.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chachques JC, Lila N, Soler-Botija C, Martinez-Ramos C, Valles A, Autret G, Perier MC, Mirochnik N, Monleon-Pradas M, Bayes-Genis A, Semino CE. Elastomeric cardiopatch scaffold for myocardial repair and ventricular support. Eur J Cardiothorac Surg. 2020;57:545–55.

    PubMed 

    Google Scholar
     

  • Guan H, Liu J, Liu D, Ding C, Zhan J, Hu X, Zhang P, Wang L, Lan Q, Qiu X. Elastic and Conductive Melanin/Poly(Vinyl Alcohol) Composite Hydrogel for Enhancing Repair Effect on myocardial infarction. Macromol Biosci 2022:e2200223.

  • Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Intelligent Hydrogels in Myocardial Regeneration and Engineering. Gels 2022, 8.

  • Bar A, Cohen S. Inducing endogenous Cardiac Regeneration: can Biomaterials connect the dots? Front Bioeng Biotechnol. 2020;8:126.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine. 2008;3:133–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korkusuz H, Ulbrich K, Welzel K, Koeberle V, Watcharin W, Bahr U, Chernikov V, Knobloch T, Petersen S, Huebner F, et al. Transferrin-coated gadolinium nanoparticles as MRI contrast agent. Mol Imaging Biol. 2013;15:148–54.

    Article 
    PubMed 

    Google Scholar
     

  • Mabrouk M, Das DB, Salem ZA, Beherei HH. Nanomaterials for Biomedical Applications: production, Characterisations, recent Trends and Difficulties. Molecules 2021, 26.

  • Singh MR. Application of metallic nanomaterials in Nanomedicine. Adv Exp Med Biol. 2018;1052:83–102.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Díez-Pascual AM. Carbon-Based nanomaterials. Int J Mol Sci 2021, 22.

  • Wang X, Zhu Y, Chen M, Yan M, Zeng G, Huang D. How do proteins ‘response’ to common carbon nanomaterials? Adv Colloid Interface Sci. 2019;270:101–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jesorka A, Orwar O. Liposomes: technologies and analytical applications. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:801–32.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karabasz A, Bzowska M, Szczepanowicz K. Biomedical Applications of multifunctional polymeric nanocarriers: a review of current literature. Int J Nanomedicine. 2020;15:8673–96.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Juárez-Maldonado A, Tortella G, Rubilar O, Fincheira P, Benavides-Mendoza A. Biostimulation and toxicity: the magnitude of the impact of nanomaterials in microorganisms and plants. J Adv Res. 2021;31:113–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyes WK, van Thriel C. Neurotoxicology of Nanomaterials. Chem Res Toxicol. 2020;33:1121–44.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng Y, Chen Z, Yang S, Liu T, Yin L, Pu Y, Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. Sci Total Environ. 2021;800:149584.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Garnizone M, Vartina E, Pilmane M. Morphologic comparison of blood vessels used for coronary artery bypass graft surgery. Folia Morphol (Warsz). 2022;81:584–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song HG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular tissue Engineering: Progress, Challenges, and Clinical Promise. Cell Stem Cell. 2018;22:340–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tanaka T, Abe Y, Cheng CJ, Tanaka R, Naito A, Asakura T. Development of Small-Diameter Elastin-Silk Fibroin vascular grafts. Front Bioeng Biotechnol. 2020;8:622220.

    Article 
    PubMed 

    Google Scholar
     

  • Harding SI, Afoke A, Brown RA, MacLeod A, Shamlou PA, Dunnill P. Engineering and cell attachment properties of human fibronectin-fibrinogen scaffolds for use in tissue engineered blood vessels. Bioprocess Biosyst Eng. 2002;25:53–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li X, Tang J, Bao L, Chen L, Hong FF. Performance improvements of the BNC tubes from unique double-silicone-tube bioreactors by introducing chitosan and heparin for application as small-diameter artificial blood vessels. Carbohydr Polym. 2017;178:394–405.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X, Qiu G, Wu Z, Yang G. Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng C Mater Biol Appl. 2015;46:111–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang H, Xia H, Xu Z, Hu B, Natsuki T, Ni QQ. Heat-stimuli shape memory effect of poly (ε-Caprolactone)-Cellulose acetate composite tubular scaffolds. Biomacromolecules. 2022;23:4074–84.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lim J, Won JY, Ahn CB, Kim J, Kim HJ, Jung JS. Comparison of hemodynamic energy between expanded polytetrafluoroethylene and Dacron Artificial Vessels. J Chest Surg. 2021;54:81–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buscemi S, Palumbo VD, Maffongelli A, Fazzotta S, Palumbo FS, Licciardi M, Fiorica C, Puleio R, Cassata G, Fiorello L, et al. Electrospun PHEA-PLA/PCL Scaffold for vascular regeneration: a preliminary in vivo evaluation. Transpl Proc. 2017;49:716–21.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Mu L, Zhang F, Mo Z, Jin C, Qi W. Manufacture and property research of heparin grafted electrospinning PCU artificial vascular scaffolds. Mater Sci Eng C Mater Biol Appl. 2017;78:854–61.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu E, Zhang J, Thomson JA, Turng LS. Fabrication and characterization of Electrospun Thermoplastic Polyurethane/Fibroin small-diameter vascular grafts for vascular tissue Engineering. Int Polym Process. 2016;31:638–46.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lee KW, Wang Y. Elastomeric PGS scaffolds in arterial tissue engineering. J Vis Exp 2011.

  • Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, Lee SB, Lee YM. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials. 2007;28:1115–22.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nguyen TH, Lee BT. The effect of cross-linking on the microstructure, mechanical properties and biocompatibility of electrospun polycaprolactone-gelatin/PLGA-gelatin/PLGA-chitosan hybrid composite. Sci Technol Adv Mater. 2012;13:035002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung S, Ingle NP, Montero GA, Kim SH, King MW. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 2010;6:1958–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu F, Fan Y. Electrostatic self-assemble modified Electrospun Poly-L-Lactic Acid/Poly-Vinylpyrrolidone composite polymer and its potential applications in small-diameter Artificial Blood Vessels. J Biomed Nanotechnol. 2020;16:101–10.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D bioprinting methods and techniques: applications on Artificial Blood Vessel Fabrication. Acta Cardiol Sin. 2019;35:284–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thein-Han W, Xu HH. Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold via coculture of human umbilical vein endothelial cells and osteoblasts. Tissue Eng Part A. 2013;19:1675–85.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Williams K, Morton PG. Diagnosis and treatment of acute myocardial infarction. AACN Clin Issues. 1995;6:375–86. quiz 491 – 372.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Y, Tao Y, Zhang L, Xu W, Zhou X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad Med J. 2019;95:210–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li D, Xiong Q, Lu D, Chen Y, Liang L, Duan H. Magnetic nanochains-based dynamic ELISA for rapid and ultrasensitive detection of acute myocardial infarction biomarkers. Anal Chim Acta. 2021;1166:338567.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • George SM, Tandon S, Kandasubramanian B. Advancements in Hydrogel-Functionalized Immunosensing Platforms. ACS Omega. 2020;5:2060–8.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aydin S, Ugur K, Aydin S, Sahin İ, Yardim M. Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag. 2019;15:1–10.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Al Fatease A, Haque M, Umar A, Ansari SG, Mahnashi MH, Alhamhoom Y, Ansari ZA. Fabrication and characterization of Acute Myocardial Infarction Myoglobin Biomarker based on chromium-doped zinc oxide nanoparticles. Biosens (Basel) 2022, 12.

  • Adeel M, Rahman MM, Lee JJ. Label-free aptasensor for the detection of cardiac biomarker myoglobin based on gold nanoparticles decorated boron nitride nanosheets. Biosens Bioelectron. 2019;126:143–50.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He S, Zhang P, Sun J, Ji Y, Huang C, Jia N. Integrating potential-resolved electrochemiluminescence with molecularly imprinting immunoassay for simultaneous detection of dual acute myocardial infarction markers. Biosens Bioelectron. 2022;201:113962.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Singh N, Ali MA, Rai P, Ghori I, Sharma A, Malhotra BD, John R. Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels. Lab Chip. 2020;20:760–77.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McLeish MJ, Kenyon GL. Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol. 2005;40:1–20.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Et Biophys Acta-Molecular Basis Disease. 2006;1762:164–80.

    Article 
    CAS 

    Google Scholar
     

  • Lai XH, Liang RL, Liu TC, Dong ZN, Wu YS, Li LH. A fluorescence Immunochromatographic Assay using Europium (III) Chelate Microparticles for Rapid, quantitative and sensitive detection of Creatine kinase MB. J Fluoresc. 2016;26:987–96.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pu Q, Yang X, Guo Y, Dai T, Yang T, Ou X, Li J, Sheng S, Xie G. Simultaneous colorimetric determination of acute myocardial infarction biomarkers by integrating self-assembled 3D gold nanovesicles into a multiple immunosorbent assay. Mikrochim Acta. 2019;186:138.

    Article 
    PubMed 

    Google Scholar
     

  • Adhikari J, Keasberry NA, Mahadi AH, Yoshikawa H, Tamiya E, Ahmed MU. An ultra-sensitive label-free electrochemiluminescence CKMB immunosensor using a novel nanocomposite-modified printed electrode. RSC Adv. 2019;9:34283–92.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tilea I, Varga A, Serban RC. Past, Present, and future of blood biomarkers for the diagnosis of Acute myocardial infarction—promises and challenges. 2021, 11:881.

  • Cai Y, Kang K, Li Q, Wang Y, He X. Rapid and Sensitive Detection of Cardiac Troponin I for point-of-care tests based on Red fluorescent microspheres. Molecules 2018, 23.

  • Tang M, Zhou Z, Shangguan L, Zhao F, Liu S. Electrochemiluminescent detection of cardiac troponin I by using soybean peroxidase labeled-antibody as signal amplifier. Talanta. 2018;180:47–53.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liao XJ, Xiao HJ, Cao JT, Ren SW, Liu YM. A novel split-type photoelectrochemical immunosensor based on chemical redox cycling amplification for sensitive detection of cardiac troponin I. Talanta. 2021;233:122564.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yola ML, Atar N. Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens Bioelectron. 2019;126:418–24.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu S, Zou S, Wang S, Li Z, Ma DL, Miao X. CTnI diagnosis in myocardial infarction using G-quadruplex selective ir(III) complex as effective electrochemiluminescence probe. Talanta. 2022;248:123622.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tang L, Casas J. Quantification of cardiac biomarkers using label-free and multiplexed gold nanorod bioprobes for myocardial infarction diagnosis. Biosens Bioelectron. 2014;61:70–5.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ji J, Lu W, Zhu Y, Jin H, Yao Y, Zhang H, Zhao Y. Porous hydrogel-encapsulated photonic barcodes for Multiplex Detection of Cardiovascular biomarkers. ACS Sens. 2019;4:1384–90.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han YH, Kim SH, Kim SZ, Park WH. Caspase inhibitor decreases apoptosis in pyrogallol-treated lung cancer Calu-6 cells via the prevention of GSH depletion. Int J Oncol. 2008;33:1099–105.

    PubMed 
    CAS 

    Google Scholar
     

  • Li Z, Zhang J, Li Y, Zhao S, Zhang P, Zhang Y, Bi J, Liu G, Yue Z. Carbon dots based photoelectrochemical sensors for ultrasensitive detection of glutathione and its applications in probing of myocardial infarction. Biosens Bioelectron. 2018;99:251–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discovery. 2008;7:489–503.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li F, Zhao A, Li Z, Xi Y, Jiang J, He J, Wang J, Cui H. Multifunctionalized hydrogel beads for label-free Chemiluminescence Imaging Immunoassay of Acute myocardial infarction biomarkers. Anal Chem. 2022;94:2665–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Richards AM, Nicholls MG, Espiner EA, Lainchbury JG, Troughton RW, Elliott J, Frampton C, Turner J, Crozier IG, Yandle TG. B-type natriuretic peptides and ejection fraction for prognosis after myocardial infarction. Circulation. 2003;107:2786–92.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dong X, Zhao G, Li X, Miao J, Fang J, Wei Q, Cao W. Electrochemiluminescence immunoassay for the N-terminal pro-B-type natriuretic peptide based on resonance energy transfer between a self-enhanced luminophore composed of silver nanocubes on gold nanoparticles and a metal-organic framework of type MIL-125. Mikrochim Acta. 2019;186:811.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu Q, Aroonyadet N, Song Y, Wang X, Cao X, Liu Y, Cong S, Wu F, Thompson ME, Zhou C. Highly sensitive and quick detection of Acute myocardial infarction biomarkers using in(2)O(3) nanoribbon biosensors fabricated using Shadow Masks. ACS Nano. 2016;10:10117–25.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C, Bucciarelli-Ducci C, Croisille P, Dall’Armellina E, Dharmakumar R, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;74:238–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu B, Zeng M, Chen J, Zhang Z, Zhang X, Fan Z, Zhang X. External magnetic Field-Induced targeted delivery of highly sensitive Iron oxide nanocubes for MRI of myocardial infarction. Small. 2016;12:4707–12.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shevtsov MA, Nikolaev BP, Ryzhov VA, Yakovleva LY, Dobrodumov AV, Marchenko YY, Margulis BA, Pitkin E, Mikhrina AL, Guzhova IV, Multhoff G. Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle. Nanomedicine. 2016;12:611–21.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang F, Wen L, Liu J, Peng W, Meng Z, Chen Q, Wang Y, Ke B, Guo Y, Mi P. Albumin nanocomposites with MnO(2)/Gd(2)O(3) motifs for precise MR imaging of acute myocardial infarction in rabbit models. Biomaterials. 2020;230:119614.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Danila D, Johnson E, Kee P. CT imaging of myocardial scars with collagen-targeting gold nanoparticles. Nanomedicine. 2013;9:1067–76.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kee PH, Danila D. CT imaging of myocardial scar burden with CNA35-conjugated gold nanoparticles. Nanomedicine. 2018;14:1941–7.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pan D, Williams TA, Senpan A, Allen JS, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. Detecting vascular biosignatures with a colloidal, radio-opaque polymeric nanoparticle. J Am Chem Soc. 2009;131:15522–7.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007;13:636–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sawall S, Franke D, Kirchherr A, Beckendorf J, Kuntz J, Maier J, Kraupner A, Backs J, Briel A, Kachelrieß M. In vivo quantification of myocardial infarction in mice using Micro-CT and a Novel Blood Pool Agent. Contrast Media Mol Imaging. 2017;2017:2617047.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Q, Zeng Y, Xiong Q, Zhong S, Li P, Ran H, Yin Y, Reutelingsperger C, Prinze FW, Ling Z. Construction of CNA35 collagen-targeted phase-changeable nanoagents for low-intensity focused Ultrasound-Triggered Ultrasound Molecular Imaging of Myocardial Fibrosis in rabbits. ACS Appl Mater Interfaces. 2019;11:23006–17.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nahrendorf M, Sosnovik DE, Waterman P, Swirski FK, Pande AN, Aikawa E, Figueiredo JL, Pittet MJ, Weissleder R. Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res. 2007;100:1218–25.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Keliher EJ, Ye YX, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, Groenen H, Fay F, Perez-Medina C, Calcagno C, et al. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun. 2017;8:14064.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Nahrendorf M, Hoyer FF, Meerwaldt AE, van Leent MMT, Senders ML, Calcagno C, Robson PM, Soultanidis G, Pérez-Medina C, Teunissen AJP, et al. Imaging Cardiovascular and Lung Macrophages with the Positron Emission Tomography Sensor (64)Cu-Macrin in mice, rabbits, and Pigs. Circ Cardiovasc Imaging. 2020;13:e010586.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karuppagounder V, Giridharan VV, Arumugam S, Sreedhar R, Palaniyandi SS, Krishnamurthy P, Quevedo J, Watanabe K, Konishi T, Thandavarayan RA. Modulation of macrophage polarization and HMGB1-TLR2/TLR4 Cascade plays a crucial role for Cardiac Remodeling in Senescence-Accelerated Prone mice. PLoS ONE. 2016;11:e0152922.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fujiwara M, Matoba T, Koga JI, Okahara A, Funamoto D, Nakano K, Tsutsui H, Egashira K. Nanoparticle incorporating toll-like receptor 4 inhibitor attenuates myocardial ischaemia-reperfusion injury by inhibiting monocyte-mediated inflammation in mice. Cardiovasc Res. 2019;115:1244–55.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen Y, Zeng Z, Ying H, Wu C, Chen S. Superparamagnetic iron oxide nanoparticles attenuate lipopolysaccharide-induced inflammatory responses through modulation of toll-like receptor 4 expression. J Appl Toxicol. 2020;40:1067–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li Y, Chen X, Jin R, Chen L, Dang M, Cao H, Dong Y, Cai B, Bai G, Gooding JJ et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci Adv 2021, 7.

  • Bao L, Dou G, Tian R, Lv Y, Ding F, Liu S, Zhao R, Zhao L, Zhou J, Weng L, et al. Engineered neutrophil apoptotic bodies ameliorate myocardial infarction by promoting macrophage efferocytosis and inflammation resolution. Bioact Mater. 2022;9:183–97.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hafstad AD, Nabeebaccus AA, Shah AM. Novel aspects of ROS signalling in heart failure. Basic Res Cardiol. 2013;108:359.

    Article 
    PubMed 

    Google Scholar
     

  • Hori M, Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res. 2009;81:457–64.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xie J, Yao Y, Wang S, Fan L, Ding J, Gao Y, Li S, Shen L, Zhu Y, Gao C. Alleviating oxidative Injury of myocardial infarction by a fibrous polyurethane Patch with condensed ROS-Scavenging backbone units. Adv Healthc Mater. 2022;11:e2101855.

    Article 
    PubMed 

    Google Scholar
     

  • Spaulding KA, Zhu Y, Takaba K, Ramasubramanian A, Badathala A, Haraldsson H, Collins A, Aguayo E, Shah C, Wallace AW, et al. Myocardial injection of a thermoresponsive hydrogel with reactive oxygen species scavenger properties improves border zone contractility. J Biomed Mater Res A. 2020;108:1736–46.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Li J, Shu Y, Hao T, Wang Y, Qian Y, Duan C, Sun H, Lin Q, Wang C. A chitosan-glutathione based injectable hydrogel for suppression of oxidative stress damage in cardiomyocytes. Biomaterials. 2013;34:9071–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dong Z, Guo J, Xing X, Zhang X, Du Y, Lu Q. RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother. 2017;89:297–304.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bo Z, Huang S, Li L, Chen L, Chen P, Luo X, Shi F, Zhu B, Shen L. EGR2 is a hub-gene in myocardial infarction and aggravates inflammation and apoptosis in hypoxia-induced cardiomyocytes. BMC Cardiovasc Disord. 2022;22:373.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu Y, Zhong D, He Y, Jiang J, Xie W, Tang Z, Qiu J, Luo J, Wang X. Photoresponsive Hydrogel-Coated Upconversion Cyanobacteria Nanocapsules for myocardial infarction Prevention and Treatment. Adv Sci (Weinh) 2022:e2202920.

  • Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rocker AJ, Cavasin M, Johnson NR, Shandas R, Park D. Sulfonated Thermoresponsive Injectable Gel for Sequential Release of Therapeutic Proteins to protect cardiac function after myocardial infarction. ACS Biomater Sci Eng. 2022;8:3883–98.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wu J, Zeng F, Huang XP, Chung JC, Konecny F, Weisel RD, Li RK. Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials. 2011;32:579–86.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lin YD, Luo CY, Hu YN, Yeh ML, Hsueh YC, Chang MY, Tsai DC, Wang JN, Tang MJ, Wei EI, et al. Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci Transl Med. 2012;4:146ra109.

    Article 
    PubMed 

    Google Scholar
     

  • Garbern JC, Minami E, Stayton PS, Murry CE. Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials. 2011;32:2407–16.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fu B, Wang X, Chen Z, Jiang N, Guo Z, Zhang Y, Zhang S, Liu X, Liu L. Improved myocardial performance in infarcted rat heart by injection of disulfide-cross-linked chitosan hydrogels loaded with basic fibroblast growth factor. J Mater Chem B. 2022;10:656–65.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo W, Feng W, Huang J, Zhang J, Fan X, Ma S, Li M, Zhan J, Cai Y, Chen M. Supramolecular Self-Assembled Nanofibers efficiently activate the precursor of hepatocyte growth factor for angiogenesis in myocardial infarction therapy. ACS Appl Mater Interfaces. 2021;13:22131–41.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Demyanets S, Kaun C, Rychli K, Pfaffenberger S, Kastl SP, Hohensinner PJ, Rega G, Katsaros KM, Afonyushkin T, Bochkov VN, et al. Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ. Basic Res Cardiol. 2011;106:217–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jiang YL, Niu S, Lin Z, Li L, Yang P, Rao P, Yang L, Jiang L, Sun L. Injectable hydrogel with dual-sensitive behavior for targeted delivery of oncostatin M to improve cardiac restoration after myocardial infarction. J Mater Chem B. 2022;10:6514–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11:768–77.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qi Q, Zhu Y, Liu G, Yuan Z, Li H, Zhao Q. Local intramyocardial delivery of bioglass with alginate hydrogels for post-infarct myocardial regeneration. Biomed Pharmacother. 2020;129:110382.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ciuffreda MC, Malpasso G, Chokoza C, Bezuidenhout D, Goetsch KP, Mura M, Pisano F, Davies NH, Gnecchi M. Synthetic extracellular matrix mimic hydrogel improves efficacy of mesenchymal stromal cell therapy for ischemic cardiomyopathy. Acta Biomater. 2018;70:71–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tang J, Wang J, Huang K, Ye Y, Su T, Qiao L, Hensley MT, Caranasos TG, Zhang J, Gu Z, Cheng K. Cardiac cell-integrated microneedle patch for treating myocardial infarction. Sci Adv. 2018;4:eaat9365.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Murohara T, Asahara T. Nitric oxide and angiogenesis in cardiovascular disease. Antioxid Redox Signal. 2002;4:825–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87:1620–4.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vong LB, Bui TQ, Tomita T, Sakamoto H, Hiramatsu Y, Nagasaki Y. Novel angiogenesis therapeutics by redox injectable hydrogel – regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials. 2018;167:143–52.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tashakori-Miyanroudi M, Rakhshan K, Ramez M, Asgarian S, Janzadeh A, Azizi Y, Seifalian A, Ramezani F. Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. Int J Biol Macromol. 2020;163:1136–46.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hoenig MR, Campbell GR, Rolfe BE, Campbell JH. Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler Thromb Vasc Biol. 2005;25:1128–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Joseph J, Domenico Bruno V, Sulaiman N, Ward A, Johnson TW, Baby HM, Kerala Varma P, Jose R, Nair SV, Menon D, et al. A novel small diameter nanotextile arterial graft is associated with surgical feasibility and safety and increased transmural endothelial ingrowth in pig. J Nanobiotechnol. 2022;20:71.

    Article 
    CAS 

    Google Scholar
     

  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71:549–74.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Mu W, Zhang Y, He X, Wang Y, Ma H, Zhu T, Li A, Hou Q, Yang W, et al. Recent advances in Cardiac Patches: materials, preparations, and Properties. ACS Biomater Sci Eng. 2022;8:3659–75.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang L, Li T, Yu Y, Shi K, Bei Z, Qian Y, Qian Z. An injectable conductive hydrogel restores electrical transmission at myocardial infarct site to preserve cardiac function and enhance repair. Bioact Mater. 2023;20:339–54.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song X, Wang X, Zhang J, Shen S, Yin W, Ye G, Wang L, Hou H, Qiu X. A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair. Biomaterials. 2021;273:120811.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang L, Liu Y, Ye G, He Y, Li B, Guan Y, Gong B, Mequanint K, Xing MMQ, Qiu X. Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs. Nat Biomed Eng. 2021;5:1157–73.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Smits AM, van Vliet P, Hassink RJ, Goumans MJ, Doevendans PA. The role of stem cells in cardiac regeneration. J Cell Mol Med. 2005;9:25–36.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tan Y, Wang L, Chen G, Liu W, Li Z, Wang Y, Wang L, Li W, Wu J, Hao J. Hyaluronate supports hESC-cardiomyocyte cell therapy for cardiac regeneration after acute myocardial infarction. Cell Prolif. 2020;53:e12942.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu T, Zhang X, Liu Y, Cui C, Sun Y, Liu W. Wet adhesive hydrogel cardiac patch loaded with anti-oxidative, autophagy-regulating molecule capsules and MSCs for restoring infarcted myocardium. Bioact Mater. 2023;21:20–31.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Q, He X, Wang B, Pan J, Shi C, Li J, Wang L, Zhao Y, Dai J, Wang D. Injectable collagen scaffold promotes swine myocardial infarction recovery by long-term local retention of transplanted human umbilical cord mesenchymal stem cells. Sci China Life Sci. 2021;64:269–81.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Niu H, Li C, Guan Y, Dang Y, Li X, Fan Z, Shen J, Ma L, Guan J. High oxygen preservation hydrogels to augment cell survival under hypoxic condition. Acta Biomater. 2020;105:56–67.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chow A, Stuckey DJ, Kidher E, Rocco M, Jabbour RJ, Mansfield CA, Darzi A, Harding SE, Stevens MM, Athanasiou T. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte encapsulating bioactive hydrogels improve rat heart function Post myocardial infarction. Stem Cell Reports. 2017;9:1415–22.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koudstaal S, Jansen Of Lorkeers SJ, Gaetani R, Gho JM, van Slochteren FJ, Sluijter JP, Doevendans PA, Ellison GM, Chamuleau SA. Concise review: heart regeneration and the role of cardiac stem cells. Stem Cells Transl Med. 2013;2:434–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, Wang J, Mayle KM, Bartels K, Salvatore M, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59:751–63.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang L, Xue S, Du M, Lian F. Highly efficient MicroRNA delivery using Functionalized Carbon Dots for enhanced Conversion of fibroblasts to cardiomyocytes. Int J Nanomedicine. 2021;16:3741–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Qin X, Wang H, Zhao X, Liu Y, Wo HT, Liu C, Nishiga M, Chen H, Ge J, et al. An in vivo miRNA delivery system for restoring Infarcted Myocardium. ACS Nano. 2019;13:9880–94.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jo YK, Lee D. Biopolymer Microparticles prepared by Microfluidics for Biomedical Applications. Small. 2020;16:e1903736.

    Article 
    PubMed 

    Google Scholar
     

  • Fontana F, Martins JP, Torrieri G, Santos HA. Nuts and bolts: Microfluidics for the production of Biomaterials. Adv Mater Technol 2019, 4.

  • Song Y, Wang Y, Qi W, Li Y, Xuan J, Wang P, Qin L. Integrative volumetric bar-chart chip for rapid and quantitative point-of-care detection of myocardial infarction biomarkers. Lab Chip. 2016;16:2955–62.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv Sci (Weinh). 2019;6:1900344.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14:e1761.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pawan KC, Hong Y, Zhang G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regenerative Biomaterials. 2019;6:185–99.

    Article 
    CAS 

    Google Scholar
     

  • Bejarano J, Navarro-Marquez M, Morales-Zavala F, Morales JO, Garcia-Carvajal I, Araya-Fuentes E, Flores Y, Verdejo HE, Castro PF, Lavandero S, Kogan MJ. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics. 2018;8:4710–32.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar