Nanotechnology

Carbon nanosol-induced assemblage of a plant-beneficial microbiome consortium | Journal of Nanobiotechnology


  • Verma SK, Gantait S, Kumar V, Gurel E. Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Sci Total Environ. 2019;667:485–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khodakovskaya M, Mahmood M, Xu Y, Li Z. Carbon nanotubes are able to penetrateplant seed coat and dramatically afect seed germination and plant growth. ACS Nano. 2009;3:3221–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cañas JE, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D, Efects of functionlized and nonfunctionlized single-walled carbon nonatubes on root elongation of select crop species. Environ Toxicol Chem 2008;27(1):1922–31

  • Kumar A, Panigrahy M, Sahoo PK, Panigrahi KCS. Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep. 2018;37:901–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kole C, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013;13:37–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo X, Wang R, Zhang H, Xing B, Naeem M, Yao T, Li R, Xu R, Zhang Z, Wu J. Effects of graphene oxide on tomato growth in different stages. Plant Physiol Biochem. 2021;162:447–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khodakovskaya MV, Biris AS, Dervishi E, Villagarcia H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano. 2012;27:2128–35.

    Article 

    Google Scholar
     

  • Khodakovskaya MV, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A. 2011;108(3):1028–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shekhawat GS, Rajput P, Rajput VD, Minkina T, Singh RK. Role of engineered carbon nanoparticles (CNPs) in promoting growth and metabolism of Vigna radiata (L.) Wilczek: Insights into the biochemical and physiological responses. Plants (Basel). 2021;10(7):1317.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiwari DK, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci. 2014;4(5):577–91.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Jousset A, de Boer W, et al. Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J. 2019;13:738–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzpatrick CR, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;22:1157–65.


    Google Scholar
     

  • Raaijmakers JM. Soil immune responses. Science. 2016;352:1392–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Della Mónica IF, Stefanoni Rubio PJ, Vaca-Paulín R, Yañez-Ocampo G. Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological insight. Arch Microbiol. 2022;204(6):316.

    Article 
    PubMed 

    Google Scholar
     

  • Bhattacharyya PN. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol iotechnol. 2012;28(4):1327–50.

    Article 
    CAS 

    Google Scholar
     

  • Ryu CM, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A. 2003;100:4927–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu F, Zhang X, Zhang H, Chen W, Yang Y, Werner D, Tao S, Wang X. Effects of various carbon nanotubes on soil bacterial community composition and structure. Environ Sci Technol. 2019;53(10):5707–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng J, Li X, Yu Y. Effects of modified nanoscale carbon black on plant growth, root cellular morphogenesis, and microbial community in cadmium-contaminated soil. Environ Sci Pollut Res Int. 2020;27(15):18423–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Li X, Liang T, Nie C, Xie F, Liu K, Peng X, Xie J. Carbon nanoparticles enhance potassium uptake via upregulating potassium channel expression and imitating biological ion channels in BY-2 cells. J Nanobiotechnol. 2020;18:21.

    Article 
    CAS 

    Google Scholar
     

  • Tarroum M, Al-Qurainy F, Ali AAM, Al-Doss A, Fki L, Hassairi A. A novel PGPF Penicillium olsonii isolated from the rhizosphere of Aeluropus littoralis promotes plant growth, enhances salt stress tolerance, and reduces chemical fertilizers inputs in hydroponic system. Front Microbiol. 2022;13:996054.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarroum M, Ali AAM, Al-Qurainy F, Al-Doss A, Fki L, Hassairi A. Harnessing the rhizosphere of the halophyte grass Aeluropus littoralis for halophilic plant-growth-promoting fungi and evaluation of their biostimulant activities. Plants (Basel). 2021;10:784.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hang X, Ou Y, Shao C, Xiong W, Zhang N, Liu H, Li R, Shen Q, Kowalchuk GA. Trichoderma-amended biofertilizer stimulates soil resident Aspergillus population for joint plant growth promotion. NPJ Biofilms Microbiomes. 2022;8:57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Li HJ, Yin QS, Zhang YL, Zhou HP, Zhang SX. Effects of nano-carbon sol on physiological characteristics of root system and potassium absorption of flue-cured tobacco. Yancao Keji. 2015;48(1):7–11.

    CAS 

    Google Scholar
     

  • Berendsen RL, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mhatre PH, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R. Plant Growth Promoting Rhizobacteria (PGPR): a potential alternative tool for Nematodes bio-control. Biocatal Agric Biotechnol. 2018;17:119–28.

    Article 

    Google Scholar
     

  • Woo SL, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol. 2023;21(5):312–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma M, Singh DN, Negi RK. The genus Sphingopyxis: systematics, ecology, and bioremediation potential. J Environ Manage. 2021;280:111744.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kertesz MA, Hydrocarbon-Degrading Sphingomonads: Sphingomonas, Sphingobium, Novosphingobium, and Sphingopyxis, in Handbook of Hydrocarbon and Lipid Microbiology, T. KN, Editor. 2010, Springer: Berlin, Heidelberg. p. 1693–1705.

  • Boss BL, Zaslow SJ, Normile TG, Izquierdo JA. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genom. 2022;23:508.

    Article 
    CAS 

    Google Scholar
     

  • Krishnan R, Busse HJ, Tanaka N, Krishnamurthi S, Rameshkumar N. Novosphingobium pokkalii sp. nov., a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res Microbiol. 2017;168(2):113–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sukweenadhi J, Kang CH, et al. Sphingomonas panaciterrae sp. nov., a plant growth-promoting bacterium isolated from soil of a ginseng feld. Arch Microbiol. 2015;197:973–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Battu L, Goud BS, Ulaganathan K, Kandasamy U. Genome inside genome: NGS based identifcation and assembly of endophytic Sphingopyxis granuli and Pseudomonas aeruginosa genomes from rice genomic reads. Genomics. 2017;109:141–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dias ACF, Andreote FD, Lacava PT, Teixeira MA, Assumpção LC. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol iotechnol. 2009;25:189–95.

    Article 
    CAS 

    Google Scholar
     

  • Dias AC, et al. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol. 2009;25:189–95.

    Article 
    CAS 

    Google Scholar
     

  • Jaiswal AK, Paudel I, Graber ER, Cytryn E, Frenkel O. Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci Rep. 2017;7:44382.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long HH, Schmidt DD, Baldwin IT. Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE. 2008;3(7): e2702.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendes LW, Navarrete AA, van Veen JA, Tsai SM. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 2014;8(8):1577–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ofek-Lalzar M, Goldman-Voronov M, Green SJ, Hadar Y, Minz D. Niche and host-associated functional signatures of the root surface microbiome. Nat Commun. 2014;5:4950.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panke-Buisse K, Goodrich JK, Ley RE, Kao-Kniffin J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 2015;9:980–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Overvoorde P, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol. 2010;2(6):a001537.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Ji Z, Bouchard DC, Nisbet RM, Schimel JP, Gardea-Torresdey JL, Holden PA. Agglomeration determines effects of carbonaceous nanomaterials on soybean nodulation, dinitrogen fixation potential, and growth in soil. ACS Nano. 2017;11:5753–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao Y, Zhang Z, Song Y, Cao W, Guo J, Zhou G, Rui Y, Liu L, Xing B. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut. 2018;232:123–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong ZH, Nies LF, Carroll NJ, Applegate B, Turco RF. Influence of fullerene (C-60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects. Sci Rep. 2016. https://doi.org/10.1038/srep28069.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren W, Teng Y, Li Z, Li L. Time-dependent effect of graphene on the structure, abundance, and function of the soil bacterial community. J Hazard Mater. 2015;297:286–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khodakovskaya MV, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small. 2013;9:115–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du J, Zhou Q. Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Adv. 2015;5:27009–17.

    Article 
    CAS 

    Google Scholar
     

  • Chen L, Li X, Nie C, Liang T, Xie F. Highly hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Adv. 2018;8:35246–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estaki M, Bokulich NA, McDonald D, González A, Kosciolek T, Martino C, Zhu Q, Birmingham A, Vázquez-Baeza Y, Dillon MR, Bolyen E, Caporaso JG, Knight R. QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protoc Bioinformatics. 2020;1:e100.

    Article 

    Google Scholar
     

  • Quast C, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson RH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;8(D1):D259–64.

    Article 

    Google Scholar
     

  • Douglas GM, Zaneveld JR. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastian M, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009. https://doi.org/10.1609/icwsm.v3i1.13937.

    Article 

    Google Scholar
     

  • Love MI, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar S, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poly F, et al. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol. 2001;67(5):2255–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169(1):30–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brazelton JN, et al. 2, 4-Diacetylphloroglucinol alters plant root development. Mol Plant Microbe Interact. 2008;21(10):1349–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gruet C, et al. Rhizophere analysis of auxin producers harboring the phenylpyruvate decarboxylase pathway. Appl Soil Ecol. 2022;173: 104363.

    Article 

    Google Scholar