Nanotechnology

Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration | Journal of Nanobiotechnology


  • O’Keefe RJ, Mao J. Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue Eng Part B Rev. 2011;17(6):389–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015;11(3):140–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110: 110698.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baroli B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci. 2009;98(4):1317–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT. Nanotechnology in bone tissue engineering. Nanomedicine. 2015;11(5):1253–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Jian L, Xie J, Cheng S, Li B, Wang D, Shao H, Zhang Y, Peng F. Strontium-containing barium titanate-modified titanium for enhancement of osteointegration. ACS Biomater Sci Eng. 2022;8(3):1271–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang JL, Witte F, Xi TF, Zheng YF, Yang K, Yang YS, Zhao DW, Meng J, Li YD, Li WR, Chan KM, Qin L. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater. 2015;21:237–49.

    Article 
    PubMed 

    Google Scholar
     

  • Ginebra MP, Espanol M, Maazouz Y, Bergez V, Pastorino D. Bioceramics and bone healing. EFORT Open Rev. 2018;3(5):173–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khare D, Basu B, Dubey AK. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials. 2020;258:120280.

  • Mir AH, Qamar A, Qadir I, Naqvi AH, Begum R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci Rep-Uk. 2020;10(1):1617.

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.

    Article 

    Google Scholar
     

  • Lee J, Kim G. Three-dimensional hierarchical nanofibrous collagen scaffold fabricated using fibrillated collagen and pluronic F-127 for regenerating bone tissue. ACS Appl Mater Interfaces. 2018;10(42):35801–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Son J, Kim J, Lee K, Hwang J, Choi Y, Seo Y, Jeon H, Kang HC, Woo HM, Kang BJ, Choi J. DNA aptamer immobilized hydroxyapatite for enhancing angiogenesis and bone regeneration. Acta Biomater. 2019;99:469–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Ma W, Zhan Y, Mao C, Shao X, Xie X, Wei X, Lin Y. Nucleic acids and analogs for bone regeneration. Bone Res. 2018;6:37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res. 2022;10(1):40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin L, Nonaka Y, Miyakawa S, Fujiwara M, Nakamura Y. Dual therapeutic action of a neutralizing anti-FGF2 aptamer in bone disease and bone cancer pain. Mol Therapy. 2016;24(11):1974–86.

    Article 
    CAS 

    Google Scholar
     

  • Shen MJ, Wang CY, Hao DX, Hao JX, Zhu YF, Han XX, Tonggu L, Chen JH, Jiao K, Tay FR, Niu LN. Multifunctional nanomachinery for enhancement of bone healing. Adv Mater. 2022;34(9): e2107924.

    Article 
    PubMed 

    Google Scholar
     

  • Osborne SE, Ellington AD. Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev. 1997;97(2):349–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem. 1999;68:611–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao F, Yin J, Chen Y, Guo C, Hu H, Su J. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front Bioeng Biotechnol. 2022;10: 972933.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S, Lau WK, Cao Y, Yang Z, Lu C, He X, Au DW, Pan X, Zhang BT, Lu C, Zhang H, Yue K, Qian A, Shang P, Xu J, Xiao L, Bian Z, Tan W, Liang Z, He F, Zhang L, Lu A, Zhang G. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med. 2015;21(3):288–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou Z, Meyer S, Propson NE, Nie J, Jiang P, Stewart R, Thomson JA. Characterization and target identification of a DNA aptamer that labels pluripotent stem cells. Cell Res. 2015;25(3):390–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Zheng X, Duan Y, Ma L, Gao C. Defined substrate by aptamer modification with the balanced properties of selective capture and stemness maintenance of mesenchymal stem cells. ACS Appl Mater Interfaces. 2019;11(16):15170–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Wang Y, Tan Y, Wang J, Liu H, Wang Y, Yang S, Shi M, Zhao S, Zhang Y, Yuan Q. A difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Adv Mater. 2017. https://doi.org/10.1002/adma.201605235.

    Article 
    PubMed 

    Google Scholar
     

  • Chen M, Sun Y, Hou Y, Luo Z, Li M, Wei Y, Chen M, Tan L, Cai K, Hu Y. Constructions of ROS-responsive titanium-hydroxyapatite implant for mesenchymal stem cell recruitment in peri-implant space and bone formation in osteoporosis microenvironment. Bioact Mater. 2022;18:56–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Lyu D, Liu S, Guo W. DNA hydrogels and microgels for biosensing and biomedical applications. Adv Mater. 2020;32(3): e1806538.

    Article 
    PubMed 

    Google Scholar
     

  • Yan X, Yang B, Chen Y, Song Y, Ye J, Pan Y, Zhou B, Wang Y, Mao F, Dong Y, Liu D, Yu J. Anti-friction MSCs delivery system improves the therapy for severe osteoarthritis. Adv Mater. 2021;33(52): e2104758.

    Article 
    PubMed 

    Google Scholar
     

  • Miao Y, Chen Y, Luo J, Liu X, Yang Q, Shi X, Wang Y. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioact Mater. 2023;21:97–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu S, Pacelli S, Feng Y, Lu Q, Wang J, Paul A. Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano. 2018;12(10):9866–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat Mater. 2006;5(10):797–801.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji W, Wu Q, Han X, Zhang W, Wei W, Chen L, Li L, Huang W. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications. Sci China Life Sci. 2020;63(12):1813–28.

    Article 
    PubMed 

    Google Scholar
     

  • Okay O. DNA hydrogels: new functional soft materials. J Polym Sci B Polym Phys. 2011;49(8):551–6.

    Article 
    CAS 

    Google Scholar
     

  • Topuz F, Okay O. Formation of hydrogels by simultaneous denaturation and cross-linking of DNA. Biomacromol. 2009;10(9):2652–61.

    Article 
    CAS 

    Google Scholar
     

  • Zhang T, Ma HS, Zhang XL, Shi SR, Lin YF. Functionalized DNA nanomaterials targeting toll-like receptor 4 prevent bisphosphonate-related osteonecrosis of the jaw via regulating mitochondrial homeostasis in macrophages. Adv Funct Mater. 2023. https://doi.org/10.1002/adfm.202213401.

    Article 
    PubMed 

    Google Scholar
     

  • Tian T, Zhang T, Shi S, Gao Y, Cai X, Lin Y. A dynamic DNA tetrahedron framework for active targeting. Nat Protoc. 2023;18(4):1028–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Li Q, Wang L, Guo Q, Liu S, Zhu S, Sun Y, Fan Y, Sun Y, Li H, Tian X, Luo D, Shi S. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. Int J Oral Sci. 2022;14(1):51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li SH, Liu YH, Tian TR, Zhang T, Lin SY, Zhou M, Zhang XL, Lin YF, Cai XX. Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration. Small. 2021. https://doi.org/10.1002/smll.202104359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi SR, Tian TR, Li YJ, Xiao DX, Zhang T, Gong P, Lin YF. Tetrahedral framework nucleic acid inhibits chondrocyte apoptosis and oxidative stress through activation of autophagy. ACS Appl Mater Interfaces. 2020;12(51):56782–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura T, Bosakova M, Nonaka Y, Hruba E, Yasuda K, Futakawa S, Kubota T, Fafilek B, Gregor T, Abraham SP, Gomolkova R, Belaskova S, Pesl M, Csukasi F, Duran I, Fujiwara M, Kavkova M, Zikmund T, Kaiser J, Buchtova M, Krakow D, Nakamura Y, Ozono K, Krejci P. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.aba4226.

    Article 
    PubMed 

    Google Scholar
     

  • Soldevilla MM, Villanueva H, Bendandi M, Inoges S. de Cerio AL-D, Pastor F, 2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials. 2015;67:274–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soldevilla MM, Villanueva H, Bendandi M, Inoges S, Lopez-Diaz de Cerio A, Pastor F. 2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials. 2015;67:274–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joh H, Fan DE. Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: review and perspective. Adv Mater. 2021;33(39): e2101965.

    Article 
    PubMed 

    Google Scholar
     

  • Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K, Yamauchi Y, Hirota K, Nakayama H, Takahashi N, Isobe T. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 2018;46(18):9289–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science. 2012;338(6110):1042–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muthukumar T, Aravinthan A, Sharmila J, Kim NS, Kim JH. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr Polym. 2016;152:566–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curtin CM, Cunniffe GM, Lyons FG, Bessho K, Dickson GR, Duffy GP, O’Brien FJ. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv Mater. 2012;24(6):749–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng L, Liu S, Cheng X, Qin Z, Lu Z, Zhang K, Zhao J. Intensified stiffness and photodynamic provocation in a collagen-based composite hydrogel drive chondrogenesis. Adv Sci (Weinh). 2019;6(16):1900099.

    Article 
    PubMed 

    Google Scholar
     

  • Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Control Release. 2016;244(Pt A):122–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarker B, Hum J, Nazhat SN, Boccaccini AR. Combining collagen and bioactive glasses for bone tissue engineering: a review. Adv Healthc Mater. 2015;4(2):176–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safari B, Aghazadeh M, Roshangar L, Aghanejad A, Davaran S. A bioactive porous scaffold containing collagen/phosphorous-modified polycaprolactone for osteogenesis of adipose-derived mesenchymal stem cells. Eur Polym J. 2022;171: 111220.

    Article 
    CAS 

    Google Scholar
     

  • Oosterlaken BM, Vena MP, de With G. In vitro mineralization of collagen. Adv Mater. 2021;33(16): e2004418.

    Article 
    PubMed 

    Google Scholar
     

  • Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019;31(1): e1801651.

    Article 
    PubMed 

    Google Scholar
     

  • Yu L, Rowe DW, Perera IP, Zhang J, Suib SL, Xin X, Wei M. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2020;12(16):18235–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang SJ, Jiang D, Zhang ZZ, Chen YR, Yang ZD, Zhang JY, Shi J, Wang X, Yu JK. Biomimetic nanosilica-collagen scaffolds for in situ bone regeneration: toward a cell-free, one-step surgery. Adv Mater. 2019;31(49): e1904341.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Liu S, Luo D, Xue Z, Yang X, Gu L, Zhou Y, Wang T. Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold. Adv Mater. 2016;28(39):8740–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, Lau CS, Liang K, Wen F, Teoh SH. Marine collagen scaffolds in tissue engineering. Curr Opin Biotechnol. 2022;74:92–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Solomon KL, Zhang X, Pavlos NJ, Abel T, Willers C, Dai K, Xu J, Zheng Q, Zheng M. In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. Int J Biol Sci. 2011;7(7):968–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoyer B, Bernhardt A, Lode A, Heinemann S, Sewing J, Klinger M, Notbohm H, Gelinsky M. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater. 2014;10(2):883–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caballe-Serrano J, Zhang S, Sculean A, Staehli A, Bosshardt DD. Tissue integration and degradation of a porous collagen-based scaffold used for soft tissue augmentation. Materials (Basel). 2020;13(10):2420.

  • Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022;12(11):5103–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holland C, Numata K, Rnjak-Kovacina J, Seib FP. The biomedical use of silk: past, present, future. Adv Healthc Mater. 2019;8(1): e1800465.

    Article 
    PubMed 

    Google Scholar
     

  • Zou S, Yao X, Shao H, Reis RL, Kundu SC, Zhang Y. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration. Acta Biomater. 2022;153:68–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi W, Sun M, Hu X, Ren B, Cheng J, Li C, Duan X, Fu X, Zhang J, Chen H, Ao Y. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater. 2017. https://doi.org/10.1002/adma.201701089.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong YS, Liu YF, Chen YH, Sun X, Zhang L, Zhang ZL, Wang YY, Qi CX, Wang SF, Yang Q. Spatiotemporal regulation of endogenous MSCs using a functional injectable hydrogel system for cartilage regeneration. NPG Asia Mater. 2021. https://doi.org/10.1038/s41427-021-00339-3.

    Article 

    Google Scholar
     

  • Cheng G, Dai JH, Dai JW, Wang H, Chen S, Liu YH, Liu XY, Li XR, Zhou X, Deng HB, Li Z, Extracellular matrix imitation utilizing nanofibers-embedded biomimetic scaffolds for facilitating cartilage regeneration. Chem Eng J. 2021;410:128379.

  • Wang T, Li YQ, Liu J, Fang Y, Guo WJ, Liu Y, Li XY, Li G, Wang XL, Zheng ZZ, Wang XQ, Kaplan DL. Intraarticularly injectable silk hydrogel microspheres with enhanced mechanical and structural stability to attenuate osteoarthritis. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2022.121611.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang W, Xiang X, Song M, Shen J, Shi Z, Huang W, Liu H. An all-silk-derived bilayer hydrogel for osteochondral tissue engineering. Mater Today Bio. 2022;17: 100485.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei K, Li Y, Kim KO, Nakagawa Y, Kim BS, Abe K, Chen GQ, Kim IS. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior. J Biomed Mater Res A. 2011;97a(3):272–80.

    Article 
    CAS 

    Google Scholar
     

  • Gao E, Li G, Cao RF, Xia HT, Xu Y, Jiang GN, Xiao KY, Chen J, Chen R, Duan L. Bionic tracheal tissue regeneration using a ring-shaped scaffold comprised of decellularized cartilaginous matrix and silk fibroin. Compos B Eng. 2022. https://doi.org/10.1016/j.compositesb.2021.109470.

    Article 

    Google Scholar
     

  • Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater. 2017;63:1–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials. 2004;25(21):5137–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C, Hofmann A, Motta A, Migliaresi C, Kirkpatrick CJ. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials. 2009;30(7):1329–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yao D, Li L, Qian Z, He W, Ding R, Liu H, Fan Y. Effect of electrospun silk fibroin-silk sericin films on macrophage polarization and vascularization. ACS Biomater Sci Eng. 2020;6(6):3502–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen K, Cerutti A. Vaccination strategies to promote mucosal antibody responses. Immunity. 2010;33(4):479–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun H, Guo QP, Shi C, McWilliam RH, Chen JQ, Zhu CH, Han FX, Zhou PH, Yang HL, Liu JB, Sun XL, Meng B, Shu WM, Li B. CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials. 2022. https://doi.org/10.1016/j.biomaterials.2021.121243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Wang H, Pan J, Li J, Zhang K, Duan W, Liang H, Chen K, Geng D, Shi Q, Yang H, Li B, Chen H. Nanoscaled bionic periosteum orchestrating the osteogenic microenvironment for sequential bone regeneration. ACS Appl Mater Interfaces. 2020;12(33):36823–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Zhang J, Wang X, Chen B, Xiao Z, Shi C, Wei Z, Hou X, Wang Q, Dai J. The osteogenic effect of bone morphogenetic protein-2 on the collagen scaffold conjugated with antibodies. J Control Release. 2010;141(1):30–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirschenbaum DM. A compilation of amino acid analyses of proteins. VII. Residues per molecule-5. Anal Biochem. 1975;66(1):123–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang X, Tan W. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res. 2010;43(1):48–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12(4):203–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J. Peptides for bone tissue engineering. J Control Release. 2016;244:122–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Zhou Z, Chen D, Li Y, Zhang Q, Su J. Bone regeneration using MMP-cleavable peptides-based hydrogels. Gels. 2021. https://doi.org/10.3390/gels7040199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aoki K, Alles N, Soysa N, Ohya K. Peptide-based delivery to bone. Adv Drug Deliver Rev. 2012;64(12):1220–38.

    Article 
    CAS 

    Google Scholar
     

  • Aoki K, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R, Mian AH, Takahashi M, Suzuki Y, Yoshimatsu M, Yamaguchi A, Deprez P, Mollat P, Murali R, Ohya K, Horne WC, Baron R. A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Invest. 2006;116(6):1525–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heath DJ, Vanderkerken K, Cheng X, Gallagher O, Prideaux M, Murali R, Croucher PI. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer Res. 2007;67(1):202–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim HK, Kim JH, Park DS, Park KS, Kang SS, Lee JS, Jeong MH, Yoon TR. Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials. 2012;33(29):7057–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo ZY, Zhang SQ, Pan JJ, Shi R, Liu H, Lyu YL, Han X, Li Y, Yang Y, Xu ZX, Sui Y, Luo E, Zhang YY, Wei SC. Time-responsive osteogenic niche of stem cells: a sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation. Biomaterials. 2018;163:25–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang TX, Zhou M, Xiao DX, Liu ZQ, Jiang YY, Feng MG, Lin YF, Cai XX. Myelosuppression alleviation and hematopoietic regeneration by tetrahedral-framework nucleic-acid nanostructures functionalized with osteogenic growth peptide. Adv Sci (Weinh). 2022. https://doi.org/10.1002/advs.202202058.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Bai J, Tao H, Hao L, Yin W, Ren X, Gao A, Li N, Wang M, Fang S, Xu Y, Chen L, Yang H, Wang H, Pan G, Geng D. Rational integration of defense and repair synergy on PEEK osteoimplants via biomimetic peptide clicking strategy. Bioact Mater. 2022;8:309–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science. 2000;289(5484):1550–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glaeser JD, Salehi K, Kanim LEA, Sheyn D, NaPier Z, Behrens PH, Garcia L, Cuellar JM, Bae HW. Anti-inflammatory peptide attenuates edema and promotes BMP-2-induced bone formation in spine fusion. Tissue Eng Part A. 2018;24(21–22):1641–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai S, Hirayama T, Abbas S, Abu-Amer Y. The IkappaB kinase (IKK) inhibitor, NEMO-binding domain peptide, blocks osteoclastogenesis and bone erosion in inflammatory arthritis. J Biol Chem. 2004;279(36):37219–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Xu J, Ruan YC, Yu MK, O’Laughlin M, Wise H, Chen D, Tian L, Shi D, Wang J, Chen S, Feng JQ, Chow DH, Xie X, Zheng L, Huang L, Huang S, Leung K, Lu N, Zhao L, Li H, Zhao D, Guo X, Chan K, Witte F, Chan HC, Zheng Y, Qin L. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma S, Wang C, Dong Y, Jing W, Wei P, Peng C, Liu Z, Zhao B, Wang Y. Microsphere-gel composite system with mesenchymal stem cell recruitment, antibacterial, and immunomodulatory properties promote bone regeneration via sequential release of LL37 and W9 peptides. ACS Appl Mater Interfaces. 2022;14(34):38525–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, Moulton HM, Seow Y, Yin H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aat0195.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang T, Yu X, Carbone EJ, Nelson C, Kan HM, Lo KW. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications. Int J Pharm. 2014;475(1–2):547–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramaraju H, Miller SJ, Kohn DH. Dual-functioning phage-derived peptides encourage human bone marrow cell-specific attachment to mineralized biomaterials. Connect Tissue Res. 2014;55(Suppl 01):160–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ‘t Hoen PAC, Jirka SMG, ten Broeke BR, Schultes EA, Aguilera B, Pang KH, Heemskerk H, Aartsma-Rus A, van Ommen GJ, den Dunnen JT. Phage display screening without repetitious selection rounds. Anal Biochem. 2012;421(2):622–31.

    Article 
    PubMed 

    Google Scholar
     

  • Liang Y, Xu X, Li X, Xiong J, Li B, Duan L, Wang D, Xia J. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl Mater Interfaces. 2020;12(33):36938–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishizaki J, Waki Y, Takahashi-Nishioka T, Yokogawa K, Miyamoto K. Selective drug delivery to bone using acidic oligopeptides. J Bone Miner Metab. 2009;27(1):1–8.

    Article 
    PubMed 

    Google Scholar
     

  • Zha Y, Li Y, Lin T, Chen J, Zhang S, Wang J. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics. 2021;11(1):397–409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pi YB, Zhang X, Shi JJ, Zhu JX, Chen WQ, Zhang CG, Gao WW, Zhou CY, Ao YF. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display. Biomaterials. 2011;32(26):6324–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Xu X, Xu L, Iqbal Z, Ouyang K, Zhang H, Wen C, Duan L, Xia J. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics. 2022;12(11):4866–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang YJ, Xu X, Li XF, Xiong JY, Li BQ, Duan L, Wang DP, Xia J. Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy (vol 12, pg 36938, 2020). Acs Appl Mater Inter. 2021;13(49):59591–59591.

    Article 
    CAS 

    Google Scholar
     

  • Safari B, Aghazadeh M, Aghanejad A. Osteogenic differentiation of human adipose-derived mesenchymal stem cells in a bisphosphonate-functionalized polycaprolactone/gelatin scaffold. Int J Biol Macromol. 2023;241: 124573.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu L, Kim Y, Seon GM, Choi SH, Park HC, Son G, Kim SM, Lim BS, Yang HC. Effects of RGD-grafted phosphatidylserine-containing liposomes on the polarization of macrophages and bone tissue regeneration. Biomaterials. 2021;279: 121239.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Lin CY, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials. 2009;30(25):4063–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng C, Zhang Q, He P, Zhou B, He K, Sun X, Lei G, Gong T, Zhang Z. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun. 2021;12(1):2174.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun J, Huang YK, Zhao H, Niu JJ, Ling XW, Zhu C, Wang L, Yang HL, Yang ZL, Pan GQ, Shi Q. Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioact Mater. 2022;9:1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Zhou C, Chen J, Luo H, Li R, Chen D, Zou X, Wang W. Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration. Bioact Mater. 2022;18:267–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Y, Mu C, Shen X, Yuan Z, Liu J, Chen W, Lin C, Tao B, Liu B, Cai K. Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment. Acta Biomater. 2018;80:412–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi K, Nagai S-I, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1–TAK1 in the BMP signaling pathway. EMBO J. 1999;18(1):179–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hattori S, Omi N. The effects of royal jelly protein on bone mineral density and strength in ovariectomized female rats. Phys Act Nutr. 2021;25(2):33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye E, Chee PL, Prasad A, Fang X, Owh C, Yeo VJJ, Loh XJ. Supramolecular soft biomaterials for biomedical applications. In: Loh XJ, editor. In-situ gelling polymers: for biomedical applications. Springer Singapore:
    Singapore. 2015;107–125.

  • Arslan E, Garip IC, Gulseren G, Tekinay AB, Guler MO. Bioactive supramolecular peptide nanofibers for regenerative medicine. Adv Healthc Mater. 2014;3(9):1357–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang H, Hong N, Liu H, Wang J, Li Y, Wu S. Differentiated adipose-derived stem cell cocultures for bone regeneration in RADA16-I in vitro. J Cell Physiol. 2018;233(12):9458–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye W, Yang Z, Cao F, Li H, Zhao T, Zhang H, Zhang Z, Yang S, Zhu J, Liu Z, Zheng J, Liu H, Ma G, Guo Q, Wang X. Articular cartilage reconstruction with TGF-beta1-simulating self-assembling peptide hydrogel-based composite scaffold. Acta Biomater. 2022;146:94–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A. 2010;16(2):465–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ta HM, Nguyen GT, Jin HM, Choi J, Park H, Kim N, Hwang HY, Kim KK. Structure-based development of a receptor activator of nuclear factor-kappaB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis. Proc Natl Acad Sci U S A. 2010;107(47):20281–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HK, Lee JS, Kim JH, Seon JK, Park KS, Jeong MH, Yoon TR. Bone-forming peptide-2 derived from BMP-7 enhances osteoblast differentiation from multipotent bone marrow stromal cells and bone formation. Exp Mol Med. 2017. https://doi.org/10.1038/emm.2017.40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vignery A, McCarthy TL. The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor I production by primary fetal rat osteoblasts. Bone. 1996;18(4):331–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sibilia V, Cocchi D, Villa I, Lattuada N, Soglian A, Rubinacci A, Muller EE, Pecile A, Netti C. Bone effects of hexarelin, a GH-releasing peptide, in female rats: influence of estrogen milieu. Eur J Endocrinol. 2002;146(6):855–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bab I, Gazit D, Chorev M, Muhlrad A, Shteyer A, Greenberg Z, Namdar M, Kahn A. Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO J. 1992;11(5):1867–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maia FR, Barbosa M, Gomes DB, Vale N, Gomes P, Granja PL, Barrias CC. Hydrogel depots for local co-delivery of osteoinductive peptides and mesenchymal stem cells. J Control Release. 2014;189:158–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials. 2010;31(9):2574–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheenstra MR, van den Belt M, Tjeerdsma-van Bokhoven JLM, Schneider VAF, Ordonez SR, van Dijk A, Veldhuizen EJA, Haagsman HP. Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci Rep. 2019;9(1):4780.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Yang Y, Wang R, Kong X, Wang X. Mineralization of calcium phosphate controlled by biomimetic self-assembled peptide monolayers via surface electrostatic potentials. Bioact Mater. 2020;5(2):387–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JY, Choo JE, Choi YS, Lee KY, Min DS, Pi SH, Seol YJ, Lee SJ, Jo IH, Chung CP, Park YJ. Characterization of the surface immobilized synthetic heparin binding domain derived from human fibroblast growth factor-2 and its effect on osteoblast differentiation. J Biomed Mater Res A. 2007;83(4):970–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lee JY, Choo JE, Choi YS, Shim IK, Lee SJ, Seol YJ, Chung CP, Park YJ. Effect of immobilized cell-binding peptides on chitosan membranes for osteoblastic differentiation of mesenchymal stem cells. Biotechnol Appl Biochem. 2009;52(Pt 1):69–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fraioli R, Dashnyam K, Kim JH, Perez RA, Kim HW, Gil J, Ginebra MP, Manero JM, Mas-Moruno C. Surface guidance of stem cell behavior: chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo. Acta Biomater. 2016;43:269–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Takahashi K, Liu Y, Derrien A, Zamora PO. A synthetic, bioactive PDGF mimetic with binding to both alpha-PDGF and beta-PDGF receptors. Growth Factors. 2007;25(2):87–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun Z, Tong G, Kim TH, Ma N, Niu G, Cao F, Chen X. PEGylated exendin-4, a modified GLP-1 analog exhibits more potent cardioprotection than its unmodified parent molecule on a dose to dose basis in a murine model of myocardial infarction. Theranostics. 2015;5(3):240–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Li X, Tomin E, Doty SB, Lane JM, Carney DH, Ryaby JT. Thrombin peptide (TP508) promotes fracture repair by up-regulating inflammatory mediators, early growth factors, and increasing angiogenesis. J Orthop Res. 2005;23(3):671–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Zhang ST, Nie BE, Du Z, Long T, Yue B. The antimicrobial peptide KR-12 promotes the osteogenic differentiation of human bone marrow stem cells by stimulating BMP/SMAD signaling. Rsc Adv. 2018;8(28):15547–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick S, Choi JS. Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J Nanosci Nanotechnol. 2014;14(1):755–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burdusel AC, Andronescu E. Lipid nanoparticles and liposomes for bone diseases treatment. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10123158.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Zheng D, Chen Y, Ruan H, Zhang Y, Chen X, Shen H, Deng L, Cui W, Chen H. Electrospun fibers improving cellular respiration via mitochondrial protection. Small. 2021;17(46): e2104012.

    Article 
    PubMed 

    Google Scholar
     

  • Sun Y, Zhou Q, Du Y, Sun J, Bi W, Liu W, Li R, Wu X, Yang F, Song L, Li N, Cui W, Yu Y. Dual biosignal-functional injectable microspheres for remodeling osteogenic microenvironment. Small. 2022;18(36): e2201656.

    Article 
    PubMed 

    Google Scholar
     

  • Goldberg R, Schroeder A, Silbert G, Turjeman K, Barenholz Y, Klein J. Boundary lubricants with exceptionally low friction coefficients based on 2D close-packed phosphatidylcholine liposomes. Adv Mater. 2011;23(31):3517.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seror J, Zhu L, Goldberg R, Day AJ, Klein J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat Commun. 2015;6:6497.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu SQ, Mahairaki V, Bai H, Ding Z, Li JX, Witwer KW, Cheng LZ. Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells. Stem Cells. 2019;37(6):779–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin M, Shi JL, Zhu WZ, Yao H, Wang DA. Polysaccharide-based biomaterials in tissue engineering: a review. Tissue Eng Part B Rev. 2021;27(6):604–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Z, Wang L, Zhou Z, Sun Q, Liu D, Chen Y, Hu H, Cai Y, Lin S, Yu Z. Simultaneous incorporation of PTH (1–34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater. 2021;6(6):1839–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2023;20:137–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahendiran B, Muthusamy S, Janani G, Mandal BB, Rajendran S, Krishnakumar GS. Surface modification of decellularized natural cellulose scaffolds with organosilanes for bone tissue regeneration. ACS Biomater Sci Eng. 2022;8(5):2000–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel DK, Dutta SD, Hexiu J, Ganguly K, Lim KT. 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization. Carbohydr Polym. 2022;281: 119077.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva AK, Juenet M, Meddahi-Pelle A, Letourneur D. Polysaccharide-based strategies for heart tissue engineering. Carbohydr Polym. 2015;116:267–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang B, Liu J, Niu D, Wu N, Yun W, Wang W, Zhang K, Li G, Yan S, Xu G, Yin J. Mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties for bone regeneration. ACS Appl Mater Interfaces. 2021;13(28):32673–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikpour P, Salimi-Kenari H, Fahimipour F, Rabiee SM, Imani M, Dashtimoghadam E, Tayebi L. Dextran hydrogels incorporated with bioactive glass-ceramic: nanocomposite scaffolds for bone tissue engineering. Carbohydr Polym. 2018;190:281–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Armstrong JP, Pence IJ, Kit-Anan W, Puetzer JL, Correia Carreira S, Moore AC, Stevens MM. Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering. Biomaterials. 2018;176:24–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu JY, Hu Y, Li L, Wang C, Wang J, Li Y, Chen D, Ding X, Shen C, Xu FJ. Biomass-derived multilayer-structured microparticles for accelerated hemostasis and bone repair. Adv Sci (Weinh). 2020;7(22):2002243.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piluso S, Labet M, Zhou C, Seo JW, Thielemans W, Patterson J. Engineered three-dimensional microenvironments with starch nanocrystals as cell-instructive materials. Biomacromol. 2019;20(10):3819–30.

    Article 
    CAS 

    Google Scholar
     

  • Murab S, Gupta A, Wlodarczyk-Biegun MK, Kumar A, van Rijn P, Whitlock P, Han SS, Agrawal G. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Carbohydr Polym. 2022;296: 119964.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee HP, Lippens E, Duda GN, Mooney DJ. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15(3):326–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Wu J, Qiao W, Zhao Y, Wong KHM, Chu PK, Bian L, Wu S, Zheng Y, Cheung KMC, Leung F, Yeung KWK. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials. 2018;174:1–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater. 2017. https://doi.org/10.1002/adma.201703443.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Wei D, Xu Y, Zhu Q. Hyaluronic acid in ocular drug delivery. Carbohydr Polym. 2021;264: 118006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, Ni Y, Liu B, Zhou T, Yu C, Su Y, Zhu X, Yu X, Zhou Y. Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym. 2017;166:31–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen JQ, Yang JB, Wang L, Zhang XW, Heng BC, Wang DA, Ge ZG. Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioact Mater. 2021;6(6):1689–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aisenbrey EA, Bryant SJ. The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Biomaterials. 2019;190–191:51–62.

    Article 
    PubMed 

    Google Scholar
     

  • Liu X, Liu S, Yang R, Wang P, Zhang W, Tan X, Ren Y, Chi B. Gradient chondroitin sulfate/poly (gamma-glutamic acid) hydrogels inducing differentiation of stem cells for cartilage tissue engineering. Carbohydr Polym. 2021;270: 118330.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borrelli C, Buckley CT. Injectable disc-derived ECM hydrogel functionalised with chondroitin sulfate for intervertebral disc regeneration. Acta Biomater. 2020;117:142–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rindone AN, Kachniarz B, Achebe CC, Riddle RC, O’Sullivan AN, Dorafshar AH, Grayson WL. Heparin-conjugated decellularized bone particles promote enhanced osteogenic signaling of PDGF-BB to adipose-derived stem cells in tissue engineered bone grafts. Adv Healthc Mater. 2019;8(10): e1801565.

    Article 
    PubMed 

    Google Scholar
     

  • Diez-Escudero A, Espanol M, Bonany M, Lu X, Persson C, Ginebra MP. Heparinization of beta tricalcium phosphate: osteo-immunomodulatory effects. Adv Healthc Mater. 2018. https://doi.org/10.1002/adhm.201700867.

    Article 
    PubMed 

    Google Scholar
     

  • Ding X, Shi J, Wei J, Li Y, Wu X, Zhang Y, Jiang X, Zhang X, Lai H. A biopolymer hydrogel electrostatically reinforced by amino-functionalized bioactive glass for accelerated bone regeneration. Sci Adv. 2021;7(50):eabj7857.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cidonio G, Cooke M, Glinka M, Dawson JI, Grover L, Oreffo ROC. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Mater Today Bio. 2019;4: 100028.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105(Pt 2):1358–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levine RL, Dobkin JA, Rozental JM, Satter MR, Nickles RJ. Blood flow reactivity to hypercapnia in strictly unilateral carotid disease: preliminary results. J Neurol Neurosurg Psychiatry. 1991;54(3):204–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu YH, Zhu Z, Pei XB, Zhang X, Cheng XT, Hu SS, Gao XM, Wang J, Chen JY, Wan QB. ZIF-8-modified multifunctional bone-adhesive hydrogels promoting angiogenesis and osteogenesis for bone regeneration. Acs Appl Mater Inter. 2020;12(33):36978–95.

    Article 
    CAS 

    Google Scholar
     

  • Lv Z, Hu T, Bian Y, Wang G, Wu Z, Li H, Liu X, Yang S, Tan C, Liang R, Weng X. A MgFe-LDH nanosheet-incorporated smart thermo-responsive hydrogel with controllable growth factor releasing capability for bone regeneration. Adv Mater. 2022;35: e2206545.

    Article 
    PubMed 

    Google Scholar
     

  • Prajatelistia E, Sanandiya ND, Nurrochman A, Marseli F, Choy S, Hwang DS. Biomimetic Janus chitin nanofiber membrane for potential guided bone regeneration application. Carbohydr Polym. 2021;251: 117032.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah NJ, Hong J, Hyder MN, Hammond PT. Osteophilic multilayer coatings for accelerated bone tissue growth. Adv Mater. 2012;24(11):1445–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naranda J, Bračič M, Vogrin M, Maver U. Recent advancements in 3D printing of polysaccharide hydrogels in cartilage tissue engineering. Materials. 2021;14(14):3977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol. 2014;25(5):448–60.

    Article 
    CAS 

    Google Scholar
     

  • Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials. 2017;147:155–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Z, Zhang H, Yan J, Wei Y, Su J. Engineered biomembrane-derived nanoparticles for nanoscale theranostics. Theranostics. 2023;13(1):20–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang QZ, Dehaini D, Zhang Y, Zhou JL, Chen XY, Zhang LF, Fang RH, Gao WW, Zhang LF. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol. 2018;13(12):1182.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang JL, Wang F, Lu Y, Qi J, Deng LF, Sousa F, Sarmento B, Xu XY, Cui WG. Recent advance of erythrocyte-mimicking nanovehicles: from bench to bedside. J Control Release. 2019;314:81–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su JH, Sun HP, Meng QS, Yin Q, Zhang PC, Zhang ZW, Yu HJ, Li YP. Bioinspired nanoparticles with NIR-controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv Funct Mater. 2016;26(41):7495–506.

    Article 
    CAS 

    Google Scholar
     

  • Wu X, Zhang XB, Feng WJ, Feng HM, Ding ZY, Zhao QQ, Li XS, Tang N, Zhang P, Li J, Wang JL. A targeted erythrocyte membrane-encapsulated drug-delivery system with anti-osteosarcoma and anti-osteolytic effects. Acs Appl Mater Inter. 2021;13(24):27920–33.

    Article 
    CAS 

    Google Scholar
     

  • Chen H, Deng J, Yao X, He Y, Li H, Jian Z, Tang Y, Zhang X, Zhang J, Dai H. Bone-targeted erythrocyte-cancer hybrid membrane-camouflaged nanoparticles for enhancing photothermal and hypoxia-activated chemotherapy of bone invasion by OSCC. J Nanobiotechnol. 2021;19(1):342.

    Article 
    CAS 

    Google Scholar
     

  • Yang HB, Yu ZY, Ji SS, Yan J, Kong Y, Huo Q, Zhang ZJ, Niu YM, Liu Y. Regulation of synovial macrophages polarization by mimicking efferocytosis for therapy of osteoarthritis. Adv Funct Mater. 2022. https://doi.org/10.1002/adfm.202207637.

    Article 
    PubMed 

    Google Scholar
     

  • Nakkala JR, Duan Y, Ding J, Muhammad W, Zhang D, Mao Z, Ouyang H, Gao C. Macrophage membrane-functionalized nanofibrous mats and their immunomodulatory effects on macrophage polarization. Acta Biomater. 2022;141:24–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Deng Y, Liu Z, Yin M, Hou M, Zhao Z, Zhou X, Yin L. Cytokine-scavenging nanodecoys reconstruct osteoclast/osteoblast balance toward the treatment of postmenopausal osteoporosis. Sci Adv. 2021;7(48): eabl6432.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li S. The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnol. 2021;19(1):277.

    Article 
    CAS 

    Google Scholar
     

  • Song H, Li X, Zhao Z, Qian J, Wang Y, Cui J, Weng W, Cao L, Chen X, Hu Y, Su J. Reversal of osteoporotic activity by endothelial cell-secreted bone targeting and biocompatible exosomes. Nano Lett. 2019;19(5):3040–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials. 2019;200:35–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil. 2016;24(12):2135–40.

    Article 
    CAS 

    Google Scholar
     

  • Bei HP, Hung PM, Yeung HL, Wang S, Zhao X. Bone-a-petite: engineering exosomes towards bone, osteochondral, and cartilage repair. Small. 2021;17(50): e2101741.

    Article 
    PubMed 

    Google Scholar
     

  • Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J, Wang X, Jing Y, Chen X, Su J. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioact Mater. 2021;6(9):2905–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo J, Wang F, Hu Y, Luo Y, Wei Y, Xu K, Zhang H, Liu H, Bo L, Lv S, Sheng S, Zhuang X, Zhang T, Xu C, Chen X, Su J. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep Med. 2022;4: 100881.

    Article 

    Google Scholar
     

  • Sun Y, Zhao J, Wu Q, Zhang Y, You Y, Jiang W, Dai K. Chondrogenic primed extracellular vesicles activate miR-455/SOX11/FOXO axis for cartilage regeneration and osteoarthritis treatment. NPJ Regen Med. 2022;7(1):53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui Y, Guo Y, Kong L, Shi J, Liu P, Li R, Geng Y, Gao W, Zhang Z, Fu D. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioact Mater. 2022;10:207–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su Y, Gao Q, Deng R, Zeng L, Guo J, Ye B, Yu J, Guo X. Aptamer engineering exosomes loaded on biomimetic periosteum to promote angiogenesis and bone regeneration by targeting injured nerves via JNK3 MAPK pathway. Mater Today Bio. 2022;16: 100434.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact Mater. 2022;14:169–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen CY, Rao SS, Yue T, Tan YJ, Yin H, Chen LJ, Luo MJ, Wang Z, Wang YY, Hong CG, Qian YX, He ZH, Liu JH, Yang F, Huang FY, Tang SY, Xie H. Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis. Sci Adv. 2022;8(15):eabg8335.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226: 119536.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol. 2021;175:544–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008;4(3):638–45.

    Article 
    CAS 
    PubMed 

    Google Scholar