Nanotechnology

Development of epistatic YES and AND protein logic gates and their assembly into signalling cascades


  • Wodak, S. J. et al. Allostery in its many disguises: from theory to applications. Structure 27, 566–578 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Alberstein, R. G., Guo, A. B. & Kortemme, T. Design principles of protein switches. Curr. Opin. Struct. Biol. 72, 71–78 (2021).

    Article 

    Google Scholar
     

  • Jackson, C., Anderson, A. & Alexandrov, K. The present and the future of protein biosensor engineering. Curr. Opin. Struct. Biol. 75, 102424 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. Grand challenges in biosensors and biomolecular electronics. Front. Bioeng. Biotechnol. 9, 707615 (2021).

    Article 

    Google Scholar
     

  • Merkx, M., Smith, B. & Jewett, M. Engineering sensor proteins. ACS Sens. 4, 3089–3091 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Masson, J.-F. & Pelletier, J. N. Will nanobiosensors change therapeutic drug monitoring? The case of methotrexate. Nanomedicine10, 521–524 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Katz, E. Enzyme‐Based Computing Systems (Wiley, 2019).

  • Stein, V. & Alexandrov, K. Protease-based synthetic sensing and signal amplification. Proc. Natl. Acad. Sci. USA 111, 15934–15939 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fink, T. & Jerala, R. Designed protease-based signaling networks. Curr. Opin. Chem. Biol. 68, 102146 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Makhlynets, O. V., Raymond, E. A. & Korendovych, I. V. Design of allosterically regulated protein catalysts. Biochemistry 54, 1444–1456 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nasu, Y., Shen, Y., Kramer, L. & Campbell, R. E. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17, 509–518 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Clark, J. J., Benson, M. L., Smith, R. D. & Carlson, H. A. Inherent versus induced protein flexibility: comparisons within and between apo and holo structures. PLoS Comput. Biol. 15, e1006705 (2019).

    Article 

    Google Scholar
     

  • Guo, Z. et al. Generalizable protein biosensors based on synthetic switch modules. J. Am. Chem. Soc. 141, 8128–8135 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nadler, D. C., Morgan, S.-A., Flamholz, A., Kortright, K. E. & Savage, D. F. Rapid construction of metabolite biosensors using domain-insertion profiling. Nat. Commun. 7, 12266 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Guntas, G., Mansell, T. J., Kim, J. R. & Ostermeier, M. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc. Natl Acad. Sci. USA 102, 11224–11229 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Ergun Ayva, C. et al. Exploring performance parameters of artificial allosteric protein switches. J. Mol. Biol. 434, 167678 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nishikawa, K. K., Hoppe, N., Smith, R., Bingman, C. & Raman, S. Epistasis shapes the fitness landscape of an allosteric specificity switch. Nat. Commun. 12, 5562 (2021).

    Article 

    Google Scholar
     

  • Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein Sci. 25, 1204–1218 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gruber, R. & Horovitz, A. Unpicking allosteric mechanisms of homo-oligomeric proteins by determining their successive ligand binding constants. Phil. Trans. R. Soc. B 373, 20170176 (2018).

    Article 

    Google Scholar
     

  • Aroul-Selvam, R., Hubbard, T. & Sasidharan, R. Domain insertions in protein structures. J. Mol. Biol. 338, 633–641 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Salverda, M. L. M., De Visser, J. A. G. M. & Barlow, M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 34, 1015–1036 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Z. et al. Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices. Nat. Commun. 12, 7137 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rochelet, M. et al. Amperometric detection of extended-spectrum β-lactamase activity: application to the characterization of resistant E. coli strains. Analyst 140, 3551–3556 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Banaszynski, L. A., Liu, C. W. & Wandless, T. J. Characterization of the FKBP·rapamycin·FRB ternary complex. J. Am. Chem. Soc. 127, 4715–4721 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Gräwe, A. & Merkx, M. Bioluminescence goes dark: boosting the performance of bioluminescent sensor proteins using complementation inhibitors. ACS Sens. 7, 3800–3808 (2022).

    Article 

    Google Scholar
     

  • Dincer, C., Bruch, R., Kling, A., Dittrich, P. S. & Urban, G. A. Multiplexed point-of-care testing —xPOCT. Trends Biotechnol. 35, 728–742 (2017).

    Article 
    CAS 

    Google Scholar