Nanotechnology

Effective treatment of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles | Journal of Nanobiotechnology


  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2021;71(3):209–49.


    Google Scholar
     

  • Zhou J, Yang W, Liu Q. Cancer challenges worldwide and in China: preparing for the inevitable. Sci China Life Sci. 2022;65(2):442–4.

    Article 
    PubMed 

    Google Scholar
     

  • Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganesh K, Massagué J. Targeting metastatic cancer. Nat Med. 2021;27(1):34–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leong SP, Pissas A, Scarato M, Gallon F, Pissas MH, Amore M, Wu M, Faries MB, Lund AW. The lymphatic system and sentinel lymph nodes: conduit for cancer metastasis. Clin Exp Metastasis. 2022;39(1):139–57.

    Article 
    PubMed 

    Google Scholar
     

  • Brown M, Assen FP, Leithner A, Abe J, Schachner H, Asfour G, Bago-Horvath Z, Stein JV, Uhrin P, Sixt M, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 2018;359(6382):1408–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demicheli R, Retsky MW, Hrushesky WJM, Baum M, Gukas ID. The effects of surgery on tumor growth: a century of investigations. Ann Oncol. 2008;19(11):1821–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceelen W, Pattyn P, Mareel M. Surgery, wound healing, and metastasis: recent insights and clinical implications. Crit Rev Oncol Hematol. 2014;89(1):16–26.

    Article 
    PubMed 

    Google Scholar
     

  • Bello MA, Bergmann A, Dias R, Thuler LCS, Tonellotto F, Pinto RR, Fabro E. Incidence complications following sentinel lymph node biopsy or axillary lymph node dissection after breast cancer surgery. J Clin Oncol. 2012;30(27):97–97.

    Article 

    Google Scholar
     

  • Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci. 2021;78(12):5139–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan X, Li Y, Feng Z, Chen G, Zhou J, He M, Wu L, Li S, Qian J, Lin H. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv Sci. 2021;8(9):2003972.

    Article 
    CAS 

    Google Scholar
     

  • Liu W, Ye X, He L, Cheng J, Luo W, Zheng M, Hu Y, Zhang W, Cao Y, Ran H, et al. A novel targeted multifunctional nanoplatform for visual chemo-hyperthermia synergy therapy on metastatic lymph nodes via lymphatic delivery. J Nanobiotechnol. 2021;19(1):432.

    Article 
    CAS 

    Google Scholar
     

  • Pang Z, Yan W, Yang J, Li Q, Guo Y, Zhou D, Jiang X. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis. ACS Nano. 2022;16(10):16019–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y, Lin L, Chandra S, Wang S, Zhu X, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater. 2020;32(11):1907365.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Li H-J, Luo Y-L, Xu C-F, Du X-J, Du J-Z, Wang J. Enhanced primary tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano. 2019;13(8):8648–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabral H, Makino J, Matsumoto Y, Mi P, Wu H, Nomoto T, Toh K, Yamada N, Higuchi Y, Konishi S, et al. Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano. 2015;9(5):4957–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. Nano Today. 2021;36:101004.

    Article 
    CAS 

    Google Scholar
     

  • Trac N, Chung EJ. Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes. Exp Biol Med. 2021;246(22):2358–71.

    Article 
    CAS 

    Google Scholar
     

  • Hegde M, Naliyadhara N, Unnikrishnan J, Alqahtani MS, Abbas M, Girisa S, Sethi G, Kunnumakkara AB. Nanoparticles in the diagnosis and treatment of cancer metastases: current and future perspectives. Cancer Lett. 2023;556:216066.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science. 2002;296(5574):1883–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong SY, Hynes RO. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle. 2006;5(8):812–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang C, Diao S, Wang C, Gong H, Liu T, Hong G, Shi X, Dai H, Liu Z. Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes. Adv Mater. 2014;26(32):5646–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu H, Wang J, Wang H, Tan T, Li J, Wang Z, Sun K, Li Y, Zhang Z. Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics. 2018;8(13):3597–610.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Fan Z, Liu J, Wang J, Xu M, Li X, Xu Y, Lu Y, Han C, Zhang Z. Melittin-carrying nanoparticle suppress T cell-driven immunity in a murine allergic dermatitis model. Adv Sci. 2023;10, 2204184.

    Article 

    Google Scholar
     

  • Liu H, Hu Y, Sun Y, Wan C, Zhang Z, Dai X, Lin Z, He Q, Yang Z, Huang P, et al. Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy. ACS Nano. 2019;13(11):12638–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Chen X, Gueydan C, Han J. Plasma membrane changes during programmed cell deaths. Cell Res. 2018;28(1):9–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Chen J, Ding L, Jin H, Lovell JF, Corbin IR, Cao W, Lo P-C, Yang M, Tsao M-S, et al. HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting. Small. 2010;6(3):430–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang C, Jin H, Qian Y, Qi S, Luo H, Luo Q, Zhang Z. Hybrid melittin cytolytic peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS Nano. 2013;7(7):5791–800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, Chen L, Liu J, Dai B, Xu G, Shen G, Luo Q, Zhang Z. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat Commun. 2019;10(1):574.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Dai Y, Zhao Y, Qi S, Liu L, Lu L, Luo Q, Zhang Z. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11(1):1110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai Y, Yu X, Wei J, Zeng F, Li Y, Yang X, Luo Q, Zhang Z. Metastatic status of sentinel lymph nodes in breast cancer determined with photoacoustic microscopy via dual-targeting nanoparticles. Light Sci Appl. 2020;9(1):164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao H-Q. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev. 2019;151–152:72–93.

    Article 
    PubMed 

    Google Scholar
     

  • Louderbough JMV, Schroeder JA. Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res. 2011;9(12):1573–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan T, Hu H, Wang H, Li J, Wang Z, Wang J, Wang S, Zhang Z, Li Y. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat Commun. 2019;10(1):3322.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed M, Purushotham AD, Douek M. Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol. 2014;15(8):e351–62.

    Article 
    PubMed 

    Google Scholar
     

  • Jeong YJ, Choi Y, Shin JM, Cho HJ, Kang JH, Park KK, Choe JY, Bae YS, Han SM, Kim CH, Chang HW, Chang YC. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem Toxicol. 2014;68:218–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffy C, Sorolla A, Wang E, Golden E, Woodward E, Davern K, Ho D, Johnstone E, Pfleger K, Redfern A, et al. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. npj Precis Oncol. 2020;4(1):24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell PJ, Fau Hewish D, Carter T, Fau Carter T, Sterling-Levis K, Fau Sterling-Levis K, Ow K, Fau Ow K, Hattarki M, Fau Hattarki M, Doughty L, Fau Doughty L, Guthrie R, Fau Guthrie R, Shapira D, Fau Shapira D, Molloy PL, Fau Molloy Pl, Werkmeister JA, et al. Cytotoxic properties of immunoconjugates containing melittin-like peptide 101 against prostate cancer: in vitro and in vivo studies. Cancer Immunol Immunother. 2004;53(5):411–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan H, Fau Myerson Jw, Ivashyna O, Fau Ivashyna O, Soman NR, Fau Soman Nr, Marsh JN, Fau Marsh Jn, Hood JL, Fau Hood Jl, Lanza GM, Fau Lanza Gm, Schlesinger PH, Fau Schlesinger Ph, Wickline SA, Wickline SA. Lipid membrane editing with peptide cargo linkers in cells and synthetic nanostructures. FASEB J. 2010;24(8):2928–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu W, Zhou Y, Sun D, Li Z. An uPA cleavable conjugate of a recombinant αvβ3 targeting toxin and its bioactivity. World J Microbiol Biotechnol. 2011;27:563–9.

    Article 
    CAS 

    Google Scholar
     

  • Ji C, Zhao M, Wang C, Liu R, Zhu S, Dong X, Su C, Gu Z. Biocompatible tantalum nanoparticles as radiosensitizers for enhancing therapy efficacy in primary tumor and metastatic sentinel lymph nodes. ACS Nano. 2022;16(6):9428–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Wang L, Xu Y-N, Chen J-L, Luo KQ, Yuan M-H, Li J, Yuan G, Gu Z-Y, Jia X-H, et al. Chemo-phototherapy with carfilzomib-encapsulated TiN nanoshells suppressing tumor growth and lymphatic metastasis. Small. 2022;18(29):2200522.

    Article 
    CAS 

    Google Scholar
     

  • Xu M, Zhao D, Chen Y, Chen C, Zhang L, Sun L, Chen J, Tang Q, Sun S, Ma C, et al. Charge reversal polypyrrole nanocomplex-mediated gene delivery and photothermal therapy for effectively treating papillary thyroid cancer and inhibiting lymphatic metastasis. ACS Appl Mater Interfaces. 2022;14(12):14072–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Dai G, Jiang G, Zhang D, Wang L, Zhang W, Chen H, Cheng T, Zhou Y, Wei X, et al. A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and targeted enhanced photothermal therapy. J Nanobiotechnol. 2023;21(1):130.

    Article 
    CAS 

    Google Scholar
     

  • Zhang G, Cheng W, Yang N, Yang B, Yu S, Zheng J, Li M, Fu Y, Li X, Song Y, et al. Peptide-decorated artificial erythrocyte microvesicles endowed with lymph node targeting function for drug delivery. Adv Ther. 2023;6(6):2200236.

    Article 
    CAS 

    Google Scholar
     

  • Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes1. Can Res. 1991;51(11):3062–6.

    CAS 

    Google Scholar
     

  • Lin Q, Deng D, Song X, Dai B, Yang X, Luo Q, Zhang Z. Self-assembled “off/on” nanopomegranate for in vivo photoacoustic and fluorescence imaging: strategic arrangement of kupffer cells in mouse hepatic lobules. ACS Nano. 2019;13(2):1526–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Corbin IR, Chen J, Cao W, Li H, Lund-Katz S, Zheng G. Enhanced cancer-targeted delivery using engineered high-density lipoprotein-based nanocarriers. J Biomed Nanotechnol. 2007;3:367.

    Article 
    CAS 

    Google Scholar
     

  • Luo H, Yang J, Jin H, Huang C, Fu J, Yang F, Gong H, Zeng S, Luo Q, Zhang Z. Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo. FASEB J. 2011;25(6):1865–73.

    Article 
    CAS 
    PubMed 

    Google Scholar