Nanotechnology

Electroactive nanoinjection platform for intracellular delivery and gene silencing | Journal of Nanobiotechnology


  • Stewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev. 2018;118:7409–531.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay A, Melosh N. Nanostructured materials for intracellular cargo delivery. Acc Chem Res. 2019;52:2462–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D. Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. Adv Mater. 2021;33:e2005363.

    Article 
    PubMed 

    Google Scholar
     

  • Yoh H, Aslanoglou S, Lestrell E, Shokouhi A-R, Belcher S, Thissen H, Voelcker NH, Elnathan R. Chapter TEN – Cellular nanotechnologies: Orchestrating cellular processes by engineering silicon nanowires architectures. In: Semiconducting Silicon Nanowires for Biomedical Applications (Second Edition) Edited by Coffer J: Woodhead Publishing; 2022: 231–278.

  • Venugopalan PL, Esteban-Fernández de Ávila B, Pal M, Ghosh A, Wang J. Fantastic voyage of nanomotors into the cell. ACS Nano. 2020;14:9423–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbott J, Ye T, Ham D, Park H. Optimizing nanoelectrode arrays for scalable intracellular electrophysiology. Acc Chem Res. 2018;51:600–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol. 2013;8:83–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei F, Tian B. Nanoelectronics for minimally invasive Cellular Recordings. Adv Funct Mater. 2020;30:1906210.

    Article 
    CAS 

    Google Scholar
     

  • Dipalo M, Caprettini V, Bruno G, Caliendo F, Garma LD, Melle G, Dukhinova M, Siciliano V, Santoro F, De Angelis F. Membrane poration mechanisms at the cell–nanostructure interface. Adv Biosyst. 2019;3:1900148.

    Article 

    Google Scholar
     

  • Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiTommaso T, Cole JM, Cassereau L, Buggé JA, Hanson JLS, Bridgen DT, Stokes BD, Loughhead SM, Beutel BA, Gilbert JB, Nussbaum K, Sorrentino A, Toggweiler J, Schmidt T, Gyuelveszi G, Bernstein H, Sharei A. Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. Proc Natl Acad Sci. 2018;115:E10907–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soltani Dehnavi S, Eivazi Zadeh Z, Harvey AR, Voelcker NH, Parish CL, Williams RJ, Elnathan R, Nisbet DR. Changing fate: reprogramming cells via Engineered Nanoscale Delivery materials. Adv Mater. 2022;34:2108757.

    Article 
    CAS 

    Google Scholar
     

  • Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature. 2016;538:183–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-aspect-ratio Nanostructured Surfaces as Biological Metamaterials. Adv Mater. 2020;32:e1903862.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnathan R, Barbato MG, Guo X, Mariano A, Wang Z, Santoro F, Shi P, Voelcker NH, Xie X, Young JL, Zhao Y, Zhao W, Chiappini C. Biointerface design for vertical nanoprobes. Nat Rev Mater. 2022;7:953–73.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. Adv NanoBiomed Res. 2021;1:2100002.

    Article 
    CAS 

    Google Scholar
     

  • Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res. 2019;52:1555–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Aslanoglou S, Murayama T, Gervinskas G, Fitzgerald LI, Sriram S, Tian J, Johnston APR, Morikawa Y, Suu K, Elnathan R, Voelcker NH. Silicon-Nanotube-Mediated intracellular delivery enables Ex vivo gene editing. Adv Mater. 2020;32:e2000036.

    Article 
    PubMed 

    Google Scholar
     

  • Rabinovich PM, Komarovskaya ME, Ye Z-J, Imai C, Campana D, Bahceci E, Weissman SM. Synthetic messenger RNA as a tool for gene therapy. Hum Gene Ther. 2006;17:1027–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gopal S, Chiappini C, Penders J, Leonardo V, Seong H, Rothery S, Korchev Y, Shevchuk A, Stevens MM. Porous silicon nanoneedles modulate endocytosis to deliver biological payloads. Adv Mater. 2019;31:1806788.

    Article 

    Google Scholar
     

  • Kinoshita M, Hynynen K. A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun. 2005;335:393–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Aslanoglou S, Gervinskas G, Abdelmaksoud H, Voelcker NH, Elnathan R. Cellular Deformations Induced by Conical Silicon Nanowire arrays facilitate Gene Delivery. Small. 2019;15:e1904819.

    Article 
    PubMed 

    Google Scholar
     

  • Kim D, Kim C-H, Moon J-I, Chung Y-G, Chang M-Y, Han B-S, Ko S, Yang E, Cha KY, Lanza R, Kim K-S. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shalek AK, Robinson JT, Karp ES, Lee JS, Ahn D-R, Yoon M-H, Sutton A, Jorgolli M, Gertner RS, Gujral TS, MacBeath G, Yang EG, Park H. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci. 2010;107:1870–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruce VJ, McNaughton BR. Inside job: methods for delivering proteins to the interior of mammalian cells. Cell Chem Biol. 2017;24:924–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nitin N, LaConte L, Zurkiya O, Hu X, Bao G. Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J Biol Inorg Chem. 2004;9:706–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDougall C, Stevenson DJ, Brown CT, Gunn-Moore F, Dholakia K. Targeted optical injection of gold nanoparticles into single mammalian cells. J Biophotonics. 2009;2:736–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiappini C, Martinez JO, De Rosa E, Almeida CS, Tasciotti E, Stevens MM. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano. 2015;9:5500–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang JA, Caprettini V, Zhao Y, Melle G, Maccaferri N, Deleye L, Zambrana-Puyalto X, Ardini M, Tantussi F, Dipalo M, De Angelis F. On-Demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Lett. 2019;19:722–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnathan R, Kantaev R, Patolsky F. Synthesis of Hybrid Multicomponent Disklike Nanoparticles. Nano Lett. 2008;8:3964–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiappini C, De Rosa E, Martinez J, Liu X, Steele J, Stevens M, Tasciotti E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater. 2015;14:532–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang D, Zhao D, Wang X, Li C, Yang T, Du L, Wei Z, Cheng Q, Cao H, Liang Z, Huang Y, Li Z. Efficient delivery of nucleic acid molecules into skin by combined use of microneedle roller and flexible interdigitated electroporation array. Theranostics. 2018;8:2361.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soofiyani SR, Baradaran B, Lotfipour F, Kazemi T, Mohammadnejad L. Gene therapy, early promises, subsequent problems, and recent breakthroughs. Adv Pharm Bull. 2013;3:249.


    Google Scholar
     

  • Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc. 2021;16:4539–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elnathan R, Tay A, Voelcker NH, Chiappini C. The start-ups taking nanoneedles into the clinic. Nat Nanotechnol. 2022;17:807–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Schmiderer L, Subramaniam A, Žemaitis K, Bäckström A, Yudovich D, Soboleva S, Galeev R, Prinz CN, Larsson J, Hjort M. Efficient and nontoxic biomolecule delivery to primary human hematopoietic stem cells using nanostraws. Proc Natl Acad Sci. 2020;117:21267–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545:423–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tay A, Melosh N. Mechanical stimulation after centrifuge-free Nano‐Electroporative transfection is efficient and maintains long‐term T cell functionalities. Small. 2021;17:2103198.

    Article 
    CAS 

    Google Scholar
     

  • Chen Y, Wang J, Li X, Hu N, Voelcker NH, Xie X, Elnathan R. Emerging roles of 1D vertical nanostructures in orchestrating immune cell functions. Adv Mater. 2020;32:2001668.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar ARK, Shou Y, Chan B, Tay LK. Materials for improving Immune cell transfection. Adv Mater. 2021;33:e2007421.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Mach M, Shokouhi A-R, Yoh HZ, Bishop DC, Murayama T, Suu K, Morikawa Y, Barry SC, Micklethwaite K, Elnathan R, Voelcker NH. Efficient non-viral CAR-T cell generation via silicon-nanotube-mediated transfection. Mater Today. 2023;64:8–17.

  • Shokouhi A-R, Chen Y, Yoh HZ, Brenker J, Alan T, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Engineering efficient Car-T cells via Electroactive Nanoinjection. Adv Mater n/a:2304122. https://doi.org/10.1002/adma.202304122.

  • Naldini L. Gene therapy returns to centre stage. Nature. 2015;526:351–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lakshmipathy U, Pelacho B, Sudo K, Linehan JL, Coucouvanis E, Kaufman DS, Verfaillie CM. Efficient transfection of embryonic and adult stem cells. Stem Cells. 2004;22:531–43.

    Article 
    PubMed 

    Google Scholar
     

  • Lestrell E, Chen Y, Aslanoglou S, O’Brien CM, Elnathan R, Voelcker NH. Silicon Nanoneedle-Induced Nuclear deformation: implications for human somatic and stem cell nuclear mechanics. ACS Appl Mater Interfaces. 2022;14:45124–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lestrell E, O’Brien CM, Elnathan R, Voelcker NH. Vertically aligned nanostructured topographies for human neural stem cell differentiation and neuronal cell interrogation. Adv Ther. 2021;4:2100061.

    Article 

    Google Scholar
     

  • Lestrell E, Patolsky F, Voelcker NH, Elnathan R. Engineered nano-bio interfaces for intracellular delivery and sampling: applications, agency and artefacts. Mater Today. 2020;33:87–104.

    Article 
    CAS 

    Google Scholar
     

  • Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol. 2015;1266:29–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi B, Xue M, Wang Y, Wang Y, Li D, Zhao X, Li X. An improved method for increasing the efficiency of gene transfection and transduction. Int J Physiol Pathophysiol Pharmacol. 2018;10:95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L. Glucose-responsive micelles from self-assembly of poly (ethylene glycol)-b-poly (acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir. 2009;25:12522–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genetics. 2003;4:346–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng. 2015;17:63–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dinca A, Chien W-M, Chin MT. Intracellular delivery of proteins with cell-penetrating peptides for therapeutic uses in human disease. Int J Mol Sci. 2016;17:263.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kristensen M, Birch D, Mørck Nielsen H. Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. Int J Mol Sci. 2016;17:185.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang J, Hsueh Y-Y, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering biomaterials with micro/nanotechnologies for cell reprogramming. ACS Nano. 2020;14:1296–318.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharei A, Poceviciute R, Jackson EL, Cho N, Mao S, Hartoularos GC, Jang DY, Jhunjhunwala S, Eyerman A, Schoettle T, Langer R, Jensena KF. Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform. Integr Biol. 2014;6:470–5.

    Article 
    CAS 

    Google Scholar
     

  • Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E, Mao S, Schneider S, Han M-J, Lytton-Jean A, Basto PA, Jhunjhunwala S, Lee J, Heller DA, Kang JW, Hartoularos GC, Kim K-S, Anderson DG, Langer R, Jensen KF. A vector-free microfluidic platform for intracellular delivery. Proc Natl Acad Sci. 2013;110:2082–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto D, Rao Sathuluri R, Kato Y, Silberberg YR, Kawamura R, Iwata F, Kobayashi T, Nakamura C. Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Sci Rep. 2015;5:15325.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang G, Carlson DW, Kang TH, Lee S, Haward SJ, Choi I, Shen AQ, Chung AJ. Intracellular nanomaterial delivery via spiral hydroporation. ACS Nano. 2020;14:3048–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo B, Hur J, Kim GB, Yun SG, Chung AJ. Highly efficient transfection of human primary T lymphocytes using droplet-enabled mechanoporation. ACS Nano. 2021;15:12888–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang T, Chen H, Yu C, Xie X. Rapid determination of the electroporation threshold for bacteria inactivation using a lab-on-a-chip platform. Environ Int. 2019;132:105040.

    Article 
    PubMed 

    Google Scholar
     

  • Boukany PE, Morss A, Liao W-c, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y, Li L. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol. 2011;6:747–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Im DJ, Jeong S-N. Transfection of Jurkat T cells by droplet electroporation. Biochem Eng J. 2017;122:133–40.

    Article 
    CAS 

    Google Scholar
     

  • Patino CA, Pathak N, Mukherjee P, Park SH, Bao G, Espinosa HD. Multiplexed high-throughput localized electroporation workflow with deep learning-based analysis for cell engineering. Sci Adv. 2022;8:eabn7637.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta P, Kar S, Kumar A, Tseng F-G, Pradhan S, Mahapatra PS, Santra TS. Pulsed laser assisted high-throughput intracellular delivery in hanging drop based three dimensional cancer spheroids. Analyst. 2021;146:4756–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y-C, Wu T-H, Clemens DL, Lee B-Y, Wen X, Horwitz MA, Teitell MA, Chiou P-Y. Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat Methods. 2015;12:439–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramesan S, Rezk AR, Dekiwadia C, Cortez-Jugo C, Yeo LY. Acoustically-mediated intracellular delivery. Nanoscale. 2018;10:13165–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon S, Kim MG, Chiu CT, Hwang JY, Kim HH, Wang Y, Shung KK. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound. Sci Rep. 2016;6:20477.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meacham JM, Durvasula K, Degertekin FL, Fedorov AG. Enhanced intracellular delivery via coordinated acoustically driven shear mechanoporation and electrophoretic insertion. Sci Rep. 2018;8:3727.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Y, Zhang Y, Yu Q, Chen H. Surface-mediated intracellular delivery by physical membrane disruption. ACS Appl Mater Interfaces. 2020;12:31054–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding X, Stewart MP, Sharei A, Weaver JC, Langer RS, Jensen KF. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat Biomed Eng. 2017;1:0039.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aghaamoo M, Chen YH, Li X, Garg N, Jiang R, Yun JT, Lee AP. High-throughput and dosage-controlled intracellular delivery of large cargos by an acoustic-electric Micro-Vortices platform. Adv Sci. 2022;9:e2102021.

    Article 

    Google Scholar
     

  • Hur J, Chung AJ. Microfluidic and nanofluidic intracellular delivery. Adv Sci. 2021;8:2004595.

    Article 
    CAS 

    Google Scholar
     

  • Chang L, Li L, Shi J, Sheng Y, Lu W, Gallego-Perez D, Lee LJ. Micro-/nanoscale electroporation. Lab Chip. 2016;16:4047–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J. A review on electroporation-based intracellular delivery. Molecules. 2018;23:3044.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balantic K, Miklavcic D, Krizaj I, Kramar P. The good and the bad of cell membrane electroporation. Acta Chim Slov. 2021;68:753–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi S-E, Khoo H, Hur SC. Recent advances in Microscale Electroporation. Chem Rev. 2022;122:11247–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shokouhi A-R, Aslanoglou S, Nisbet D, Voelcker NH, Elnathan R. Vertically configured nanostructure-mediated electroporation: a promising route for intracellular regulations and interrogations. Mater Horiz. 2020;7:2810–31.

    Article 
    CAS 

    Google Scholar
     

  • Tay A. The benefits of going small: nanostructures for mammalian cell transfection. ACS Nano. 2020;14:7714–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoh HZ, Chen Y, Aslanoglou S, Wong S, Trifunovic Z, Crawford S, Lestrell E, Priest C, Alba M, Thissen H, Voelcker NH, Elnathan R. Polymeric nanoneedle arrays mediate stiffness-independent intracellular delivery. Adv Funct Mater. 2022;32:2104828.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Matino L, Zhang W, Klausen L, McGuire AF, Lubrano C, Zhao W, Santoro F, Cui B. A nanostructure platform for live-cell manipulation of membrane curvature. Nat Protoc. 2019;14:1772–802.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhingardive V, Edri A, Kossover A, Saux GL, Khand B, Radinsky O, Iraqi M, Porgador A, Schvartzman M. Nanowire Based Mechanostimulating platform for tunable activation of natural killer cells. Adv Funct Mater. 2021;31:2103063.

    Article 
    CAS 

    Google Scholar
     

  • Rostgaard KR, Frederiksen RS, Liu Y-CC, Berthing T, Madsen MH, Holm J, Nygård J, Martinez KL. Vertical nanowire arrays as a versatile platform for protein detection and analysis. Nanoscale. 2013;5:10226–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elnathan R, Holle AW, Young J, George MA, Heifler O, Goychuk A, Frey E, Kemkemer R, Spatz JP, Kosloff A, Patolsky F, Voelcker NH. Optically transparent vertical silicon nanowire arrays for live-cell imaging. J Nanobiotechnol. 2021;19:51.

    Article 
    CAS 

    Google Scholar
     

  • Brodoceanu D, Alhmoud HZ, Elnathan R, Delalat B, Voelcker NH, Kraus T. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching. Nanotechnology. 2016;27:075301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elnathan R, Isa L, Brodoceanu D, Nelson A, Harding FJ, Delalat B, Kraus T, Voelcker NH. Versatile particle-based Route to engineer vertically aligned Silicon Nanowire arrays and Nanoscale pores. ACS Appl Mater Interfaces. 2015;7:23717–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rey BM, Elnathan R, Ditcovski R, Geisel K, Zanini M, Fernandez-Rodriguez M-A, Naik VV, Frutiger A, Richtering W, Ellenbogen T, Voelcker NH, Isa L. Fully tunable Silicon Nanowire arrays fabricated by soft nanoparticle templating. Nano Lett. 2016;16:157–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He G, Feng J, Zhang A, Zhou L, Wen R, Wu J, Yang C, Yang J, Li C, Chen D, Wang J, Hu N, Xie X. Multifunctional branched nanostraw-electroporation platform for intracellular regulation and monitoring of circulating Tumor cells. Nano Lett. 2019;19:7201–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie X, Xu AM, Leal-Ortiz S, Cao Y, Garner CC, Melosh NA. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano. 2013;7:4351–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caprettini V, Cerea A, Melle G, Lovato L, Capozza R, Huang J-A, Tantussi F, Dipalo M, De Angelis F. Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Sci Rep. 2017;7:1–8.

    Article 
    CAS 

    Google Scholar
     

  • Cao Y, Chen H, Qiu R, Hanna M, Ma E, Hjort M, Zhang A, Lewis RS, Wu JC, Melosh NA. Universal intracellular biomolecule delivery with precise dosage control. Sci Adv. 2018;4:eaat8131.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang A, Fang J, Wang J, Xie X, Chen H-J, He G. Interrogation on the Cellular Nano-Interface and Biosafety of repeated Nano-Electroporation by Nanostraw System. Biosensors. 2022;12:522.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hebisch E, Hjort M, Volpati D, Prinz CN. Nanostraw-assisted Cellular Injection of fluorescent nanodiamonds via direct membrane opening. Small. 2021;17:e2006421.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang A, Yao C, Hang T, Chen M, He G, Chen H-j, Xie X. Spin-Coating-Based fabrication of Nanostraw arrays for Cellular Nano-electroporation. ACS Appl Nano Mater. 2022;5:2057–67.

    Article 
    CAS 

    Google Scholar
     

  • Messina GC, Dipalo M, La Rocca R, Zilio P, Caprettini V, Proietti Zaccaria R, Toma A, Tantussi F, Berdondini L, De Angelis F. Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes. Adv Mater. 2015;27:7145–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen R, Zhang AH, Liu D, Feng J, Yang J, Xia D, Wang J, Li C, Zhang T, Hu N, Hang T, He G, Xie X. Intracellular delivery and sensing System based on Electroplated Conductive Nanostraw arrays. ACS Appl Mater Interfaces. 2019;11:43936–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin ZC, Xie C, Osakada Y, Cui Y, Cui B. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat Commun. 2014;5:3206.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Yoh HZ, Shokouhi AR, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Role of actin cytoskeleton in cargo delivery mediated by vertically aligned silicon nanotubes. J Nanobiotechnol. 2022;20:406.

    Article 
    CAS 

    Google Scholar
     

  • Lee K, Lingampalli N, Pisano AP, Murthy N, So H. Physical delivery of macromolecules using high-aspect ratio nanostructured materials. ACS Appl Mater Interfaces. 2015;7:23387–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He G, Hu N, Xu AM, Li X, Zhao Y, Xie X. Nanoneedle platforms: the many ways to pierce the cell membrane. Adv Funct Mater. 2020;30:1909890.

    Article 
    CAS 

    Google Scholar
     

  • Capozza R, Caprettini V, Gonano CA, Bosca A, Moia F, Santoro F, De Angelis F. Cell membrane disruption by vertical micro-/nanopillars: role of membrane bending and traction forces. ACS Appl Mater Interfaces. 2018;10:29107–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saklayen N, Huber M, Madrid M, Nuzzo V, Vulis DI, Shen W, Nelson J, McClelland AA, Heisterkamp A, Mazur E. Intracellular delivery using nanosecond-laser excitation of large-area plasmonic substrates. ACS Nano. 2017;11:3671–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yang Y, Yan L, Kwok SY, Li W, Wang Z, Zhu X, Zhu G, Zhang W, Chen X, Shi P. Poking cells for efficient vector-free intracellular delivery. Nat Commun. 2014;5:4466.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixit HG, Starr R, Dundon ML, Pairs PI, Yang X, Zhang Y, Nampe D, Ballas CB, Tsutsui H, Forman SJ, Brown CE, Rao MP. Massively-parallelized, deterministic mechanoporation for intracellular delivery. Nano Lett. 2020;20:860–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tay A, Melosh N. Transfection with nanostructure electro-injection is minimally perturbative. Adv Ther. 2019;2:1900133.

    Article 
    CAS 

    Google Scholar
     

  • He G, Chen HJ, Liu D, Feng Y, Yang C, Hang T, Wu J, Cao Y, Xie X. Fabrication of various structures of nanostraw arrays and their applications in gene delivery. ACS Appl Mater Interfaces. 2018;5:1701535.

    Article 

    Google Scholar
     

  • Riaz K, Leung S-F, Fan Z, Lee Y-K. Electric field enhanced 3D scalable low-voltage nano-spike electroporation system. Sens Actuator A Phys. 2017;255:10–20.

    Article 
    CAS 

    Google Scholar
     

  • Dong Z, Chang L. Recent electroporation-based systems for intracellular molecule delivery. Nanotechnol Precis Eng. 2021;4:045001.

    Article 
    CAS 

    Google Scholar
     

  • Fajrial AK, Ding X. Advanced nanostructures for cell membrane poration. Nanotechnology. 2019;30:264002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shalek AK, Gaublomme JT, Wang L, Yosef N, Chevrier N, Andersen MS, Robinson JT, Pochet N, Neuberg D, Gertner RS, Amit I, Brown JR, Hacohen N, Regev A, Wu CJ, Park H. Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett. 2012;12:6498–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elnathan R, Delalat B, Brodoceanu D, Alhmoud H, Harding FJ, Buehler K, Nelson A, Isa L, Kraus T, Voelcker NH. Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv Funct Mater. 2015;25:7215–25.

    Article 
    CAS 

    Google Scholar
     

  • Choi M, Lee SH, Kim WB, Gujrati V, Kim D, Lee J, Kim JI, Kim H, Saw PE, Jon S. Intracellular delivery of bioactive cargos to hard-to‐transfect cells using Carbon Nanosyringe arrays under an Applied Centrifugal g‐Force. Adv Healthc Mater. 2016;5:101–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 2014;16:295–320.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Chang L, Chiang C-L, Lee LJ. Micro-/nano-electroporation for active gene delivery. Curr Pharm Des. 2015;21:6081–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henslee BE, Morss A, Hu X, Lafyatis GP, Lee LJ. Electroporation dependence on cell size: optical tweezers study. Anal Chem. 2011;83:3998–4003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valley JK, Neale S, Hsu HY, Ohta AT, Jamshidi A, Wu MC. Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. Lab Chip. 2009;9:1714–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo X, Zhu R. Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array. Sci Rep. 2016;6:1–8.


    Google Scholar
     

  • Lee M, Chea K, Pyda R, Chua M, Dominguez I. Comparative analysis of non-viral transfection methods in mouse embryonic fibroblast cells. J Biomol Tech. 2017;28:67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fouriki A, Dobson J. Nanomagnetic gene transfection for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts. Materials. 2013;6:255–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawasaki H, Kosugi I, Arai Y, Iwashita T, Tsutsui Y. Mouse embryonic stem cells inhibit murine cytomegalovirus infection through a multi-step process. PLoS ONE. 2011;6:e17492.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted intracellular delivery of antibodies: the state of the art. Front Pharmacol. 2018;9:1208.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh K, Ejaz W, Dutta K, Thayumanavan S. Antibody delivery for intracellular targets: Emergent Therapeutic potential. Bioconjug Chem. 2019;30:1028–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaston J, Maestrali N, Lalle G, Gagnaire M, Masiero A, Dumas B, Dabdoubi T, Radošević K, Berne P-F. Intracellular delivery of therapeutic antibodies into specific cells using antibody-peptide fusions. Sci Rep. 2019;9:1–12.

    Article 

    Google Scholar
     

  • Aslanoglou S, Chen Y, Oorschot V, Trifunovic Z, Hanssen E, Suu K, Voelcker NH, Elnathan R. Efficient transmission electron microscopy characterization of cell–nanostructure interfacial interactions. J Am Chem Soc. 2020;142:15649–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar T. A brief overview of electroporation pulse strength–duration space: a region where additional intracellular effects are expected. Bioelectrochemistry. 2012;87:236–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabriel B, Teissie J. Generation of reactive-oxygen species induced by electropermeabilization of chinese hamster ovary cells and their consequence on cell viability. Eur J Biochem. 1994;223:25–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. 2010;397:3173–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitajiri S-i, Sakamoto T, Belyantseva IA, Goodyear RJ, Stepanyan R, Fujiwara I, Bird JE, Riazuddin S, Riazuddin S, Ahmed ZM. Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell. 2010;141:786–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaharija B, Samardžija B, Bradshaw NJ. The TRIOBP isoforms and their distinct roles in actin stabilization, deafness, Mental Illness, and Cancer. Molecules. 2020;25:4967.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao J, Wang S, Gunther LK, Kitajiri S-i, Li C, Sakamoto T. The actin-bundling protein TRIOBP-4 and-5 promotes the motility of pancreatic cancer cells. Cancer Lett. 2015;356:367–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoh HZ, Chen Y, Shokouhi A-R, Thissen H, Voelcker NH, Elnathan R. The influence of dysfunctional actin on polystyrene-nanotube-mediated mRNA nanoinjection into mammalian cells. Nanoscale. 2023;15:7737–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carthew J, Abdelmaksoud HH, Cowley KJ, Hodgson-Garms M, Elnathan R, Spatz JP, Brugger J, Thissen H, Simpson KJ, Voelcker NH, Frith JE, Cadarso VJ. Next Generation Cell Culture Tools featuring Micro- and nanotopographies for Biological Screening. Adv Funct Mater. 2022;32:2100881.

    Article 
    CAS 

    Google Scholar
     

  • Carthew J, Abdelmaksoud HH, Hodgson-Garms M, Aslanoglou S, Ghavamian S, Elnathan R, Spatz JP, Brugger J, Thissen H, Voelcker NH, Cadarso VJ, Frith JE. Precision Surface Microtopography regulates cell fate via changes to Actomyosin Contractility and Nuclear Architecture. Adv Sci. 2021;8:2003186.

    Article 
    CAS 

    Google Scholar