Nanotechnology

Extracellular vesicles: a rising star for therapeutics and drug delivery | Journal of Nanobiotechnology


  • Jackson KK, Mata C, Marcus RK. A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources. Talanta. 2022;252:123779.

    Article 
    PubMed 

    Google Scholar
     

  • Witwer KW, Wolfram J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat Reviews Mater. 2021;6:103–6.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Zhang HB, Gu JM, Zhang JY, Shi H, Qian H, Wang DQ, Xu WR, Pan JM, Santos HA. Engineered extracellular vesicles for cancer therapy. Adv Mater. 2021;33:25.


    Google Scholar
     

  • Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Wiklander OPB, Brennan MA, Lotval J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med. 2019;11:15.

    Article 

    Google Scholar
     

  • Luo RH, Liu MM, Tan TT, Yang Q, Wang Y, Men LH, Zhao LP, Zhang HH, Wang SL, Xie T, Tian QC. Emerging significance and therapeutic potential of extracellular vesicles. Int J Biol Sci. 2021;17:2476–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue VW, Wong SCC, Song GQ, Cho WCS. Promising RNA-based cancer gene therapy using extracellular vesicles for drug delivery. Expert Opin Biol Ther. 2020;20:767–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li AX, Zhao YA, Li YX, Jiang LD, Gu YW, Liu JY. Cell-derived biomimetic nanocarriers for targeted cancer therapy: cell membranes and extracellular vesicles. Drug Delivery. 2021;28:1237–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morad G, Carman CV, Hagedorn EJ, Perlin JR, Zon LI, Mustafaoglu N, Park TE, Ingber DE, Daisy CC, Moses MA. Tumor-derived extracellular vesicles breach the Intact blood-brain barrier via transcytosis. ACS Nano. 2019;13:13853–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee H, Park H, Noh GJ, Lee ES. pH-responsive hyaluronate-anchored extracellular vesicles to promote tumor-targeted drug delivery. Carbohydr Polym. 2018;202:323–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galieva LR, James V, Mukhamedshina YO, Rizvanov AA. Therapeutic potential of extracellular vesicles for the treatment of nerve disorders. Front NeuroSci. 2019;13:9.

    Article 

    Google Scholar
     

  • Lee JR, Park BW, Kim J, Choo YW, Kim HY, Yoon JK, Kim H, Hwang JW, Kang M, Kwon SP, et al. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair. Sci Adv. 2020;6:14.

    Article 

    Google Scholar
     

  • Armstrong JPK, Stevens MM. Strategic design of extracellular vesicle drug delivery systems. Adv Drug Deliv Rev. 2018;130:12–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun DM, Zhuang XY, Xiang XY, Liu YL, Zhang SY, Liu CR, Barnes S, Grizzle W, Miller D, Zhang HG. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18:1606–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez-Oller L, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, Schwartz S. Extracellular vesicles as drug delivery systems in cancer. Pharmaceutics. 2020;12:20.

    Article 

    Google Scholar
     

  • Sil S, Dagur RS, Liao K, Peeples ES, Hu GK, Periyasamy P, Buch S. Strategies for the use of extracellular vesicles for the delivery of therapeutics. J Neuroimmune Pharmacol. 2020;15:422–42.

    Article 
    PubMed 

    Google Scholar
     

  • Min L, Wang BS, Bao H, Li XR, Zhao LB, Meng JX, Wang ST. Advanced nanotechnologies for extracellular vesicle-based liquid biopsy. Adv Sci. 2021;8:28.

    Article 

    Google Scholar
     

  • Liu JL, Chen Y, Pei F, Zeng CM, Yao Y, Liao W, Zhao ZH. Extracellular vesicles in liquid biopsies: potential for disease diagnosis. Biomed Res Int. 2021;2021:17.


    Google Scholar
     

  • Sharma S, Masud MK, Kaneti YV, Rewatkar P, Koradia A, Hossain MSA, Yamauchi Y, Popat A, Salomon C. Extracellular vesicle nanoarchitectonics for novel drug delivery applications. Small. 2021;17:22.

    Article 

    Google Scholar
     

  • Geng TJ, Pan PT, Leung E, Chen Q, Chamley L, Wu ZM. Recent advancement and technical challenges in developing small extracellular vesicles for cancer drug delivery. Pharm Res. 2021;38:179–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurunathan S, Kang MH, Qasim M, Khan K, Kim JH. Biogenesis, membrane trafficking, functions, and next generation nanotherapeutics medicine of extracellular vesicles. Int J Nanomed. 2021;16:3357–83.

    Article 

    Google Scholar
     

  • Teng F, Fussenegger M. Shedding light on extracellular vesicle biogenesis and bioengineering. Adv Sci. 2021;8:17.

    Article 

    Google Scholar
     

  • Pirisinu M, Pham TC, Zhang DX, Hong TN, Nguyen LT, Le MTN. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: recent advances, current obstacles, and challenges for clinical translation. Sem Cancer Biol. 2022;80:340–55.

    Article 
    CAS 

    Google Scholar
     

  • Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. J Controlled Release. 2016;244:167–83.

    Article 
    CAS 

    Google Scholar
     

  • Stahl AL, Johansson K, Mossberg M, Kahn R, Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol. 2019;34:11–30.

    Article 
    PubMed 

    Google Scholar
     

  • Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75:193–208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leone DA, Rees AJ, Kain R. Dendritic cells and routing cargo into exosomes. Immunol Cell Biol. 2018;96:683–93.

    Article 
    CAS 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:640.

    Article 

    Google Scholar
     

  • Michaela S, Aigner A. Nucleic acid delivery with extracellular vesicles. Adv Drug Deliv Rev. 2021;173:89–111.

    Article 

    Google Scholar
     

  • Juan T, Furthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018;74:66–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt O, Teis D. The ESCRT machinery. Curr Biol. 2012;22:R116–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabeza L, Perazzoli G, Pena M, Cepero A, Luque C, Melguizo C, Prados J. Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Controlled Release. 2020;327:296–315.

    Article 
    CAS 

    Google Scholar
     

  • Dreyer F, Baur A. Biogenesis and functions of exosomes and extracellular vesicles. Methods Mol Biol (Clifton NJ). 2016;1448:201–16.

    Article 
    CAS 

    Google Scholar
     

  • Patil AA, Rhee WJ. Exosomes: biogenesis, composition, functions, and their role in pre-metastatic niche formation. Biotechnol Bioprocess Eng. 2019;24:689–701.

    Article 
    CAS 

    Google Scholar
     

  • Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:14.

    Article 

    Google Scholar
     

  • Cheng LS, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discovery. 2022;21:379–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathieu M, Martin-Jaular L, Lavieu G, Thery C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi RU, Prieto-Vila M, Hironaka A, Ochiya T. The role of extracellular vesicle microRNAs in cancer biology. Clin Chem Lab Med. 2017;55:648–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu SL, Li SY, Yi M, Li N, Wu KM. Roles of microvesicles in tumor progression and clinical applications. Int J Nanomed. 2021;16:7071–90.

    Article 
    CAS 

    Google Scholar
     

  • Shao HL, Im H, Castro CM, Breakefield X, Weissleder R, Lee HH. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118:1917–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inal JM, Ansa-Addo EA, Stratton D, Kholia S, Antwi-Baffour SS, Jorfi S, Lange S. Microvesicles in health and disease. Arch Immunol Ther Exp. 2012;60:107–21.

    Article 
    CAS 

    Google Scholar
     

  • Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D’Souza-Schorey C. ARF6-Regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19:1875–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tricarico C, Clancy J, D’Souza-Schorey C. Biology and biogenesis of shed microvesicles. Small GTPases. 2017;8:220–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atkin-Smith GK, Tixeira R, Paone S, Mathivanan S, Collins C, Liem M, Goodall KJ, Ravichandran KS, Hulett MD, Poon IKH. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun. 2015;6:10.

    Article 

    Google Scholar
     

  • Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol. 2018;9:9.

    Article 

    Google Scholar
     

  • Mentkowski KI, Snitzer JD, Rusnak S, Lang JK. Therapeutic potential of engineered extracellular vesicles. Aaps J. 2018;20:17.

    Article 

    Google Scholar
     

  • Lane JD, Allan VJ, Woodman PG. Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells. J Cell Sci. 2005;118:4059–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Battistelli M, Falcieri E. Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology-Basel. 2020;9:10.


    Google Scholar
     

  • Depraetere V. Eat me” signals of apoptotic bodies. Nat Cell Biol. 2000;2:E104–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clancy JW, Sedgwick A, Rosse C, Muralidharan-Chari V, Raposo G, Method M, Chavrier P. D’Souza-Schorey C: regulated delivery of molecular cargo to invasive tumour-derived microvesicles. Nat Commun. 2015;6:11.

    Article 

    Google Scholar
     

  • Feng QY, Zhang CL, Lum D, Druso JE, Blank B, Wilson KF, Welm A, Antonyak MA, Cerione RA. A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun. 2017;8:17.

    Article 

    Google Scholar
     

  • Fontana F, Carollo E, Melling GE, Carter DRF. Extracellular vesicles: emerging modulators of cancer drug resistance. Cancers. 2021;13:16.

    Article 

    Google Scholar
     

  • Silachev DN, Goryunov KV, Shpilyuk MA, Beznoschenko OS, Morozova NY, Kraevaya EE, Popkov VA, Pevzner IB, Zorova LD, Evtushenko EA, et al. Effect of MSCs and MSC-Derived extracellular vesicles on human blood coagulation. Cells. 2019;8:23.

    Article 

    Google Scholar
     

  • Malda J, Boere J, van de Lest CHA, van Weeren PR, Wauben AHM. Extracellular vesicles – new tool for joint repair and regeneration. Nat Rev Rheumatol. 2016;12:243–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu WC, Song SJ, Zhang Y, Li X. Role of extracellular vesicles in autoimmune pathogenesis. Front Immunol. 2020;11:9.

    Article 

    Google Scholar
     

  • Agrahari V, Agrahari V, Burnouf PA, Chew CH, Burnouf T. Extracellular microvesicles as New Industrial Therapeutic Frontiers. Trends Biotechnol. 2019;37:707–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie F, Zhou XX, Fang MY, Li HY, Tu YF, Su P, Zhang L, Zhou FF. Extracellular vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. Adv Sci. 2019;6:18.

    Article 

    Google Scholar
     

  • Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang BR, Zhu Y, Ni J, Thompson J, Malouf D, Bucci J, Graham P, Li Y. Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics. 2020;10:2309–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang DB, Zhang WH, Zhang HY, Zhang FQ, Chen LM, Ma LX, Larcher LM, Chen SX, Liu N, Zhao QX, et al. Progress, opportunity, and perspective on exosome isolation – efforts for efficient exosome-based theranostics. Theranostics. 2020;10:3684–707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. Elucidating methods for isolation and quantification of Exosomes: a review. Mol Biotechnol. 2021;63:249–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heras KL, Royo F, Garcia-Vallicrosa C, Igartua M, Santos-Vizcaino E, Falcon-Perez JM, Hernandez RM. Extracellular vesicles from hair follicle-derived mesenchymal stromal cells: isolation, characterization and therapeutic potential for chronic wound healing. Stem Cell Res Ther. 2022;13:18.


    Google Scholar
     

  • Li QY, Wang YL, Xue YY, Qiao LA, Yu GP, Liu YS, Yu SN. Ultrasensitive analysis of exosomes using a 3D self-assembled nanostructured SiO2 microfluidic chip. ACS Appl Mater Interfaces. 2022;14:14693–702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cvjetkovic A, Lotvall J, Lasser C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell vesicles. 2014. https://doi.org/10.3402/jev.v3.23111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang MD, Jin K, Gao L, Zhang ZK, Li F, Zhou FF, Zhang L. Methods and technologies for exosome isolation and characterization. Small Methods. 2018;2:10.

    Article 

    Google Scholar
     

  • Nordin JZ, Lee Y, Vader P, Mager I, Johansson HJ, Heusermann W, Wiklander OPB, Hallbrink M, Seow Y, Bultema JJ, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine-Nanotechnol Biol Med. 2015;11:879–83.

    Article 
    CAS 

    Google Scholar
     

  • Chen JC, Li PL, Zhang TY, Xu ZP, Huang XW, Wang RM, Du LT. Review on strategies and Technologies for Exosome isolation and purification. Front Bioeng Biotechnol. 2022;9:18.

    Article 

    Google Scholar
     

  • Alzhrani GN, Alanazi ST, Alsharif SY, Albalawi AM, Alsharif AA, Abdel-Maksoud MS, Elsherbiny N. Exosomes: isolation, characterization, and biomedical applications. Cell Biol Int. 2021;45:1807–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arab T, Raffo-Romero A, Van Camp C, Lemaire Q, Le Marrec-Croq F, Drago F, Aboulouard S, Slomianny C, Lacoste AS, Guigon I, et al. Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and optiprep (TM) density gradient isolation. J Extracell Vesicles. 2019;8:18.

    Article 

    Google Scholar
     

  • Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles. 2016;5:17.

    Article 

    Google Scholar
     

  • Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci. 2020;21:19.

    Article 

    Google Scholar
     

  • Monguio-Tortajada M, Moron-Font M, Gamez-Valero A, Carreras-Planella L, Borras FE, Franquesa M. Extracellular-vesicle isolation from different biological fluids by size-exclusion chromatography. Curr Protoc Stem Cell Biol. 2019;49:e82.

    Article 
    PubMed 

    Google Scholar
     

  • Foers AD, Chatfield S, Dagley LF, Scicluna BJ, Webb AI, Cheng L, Hill AF, Wicks IP, Pang KC. Enrichment of extracellular vesicles from human synovial fluid using size exclusion chromatography. J Extracell Vesicles. 2018;7:13.

    Article 

    Google Scholar
     

  • Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Feizi MAH, Nieuwland R, Lotvall J, Lasser C. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75:2873–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan S, Yu HL, Yan GQ, Gao MX, Sun WB, Zhang XM. Characterization of urinary exosomes purified with size exclusion chromatography and ultracentrifugation. J Proteome Res. 2020;19:2217–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saad MG, Beyenal H, Dong WJ. Exosomes as powerful engines in cancer: isolation, characterization and detection techniques. Biosensors-Basel. 2021;11:37.


    Google Scholar
     

  • Zhang Y, Bi JY, Huang JY, Tang YN, Du SY, Li PY. Exosome: a review of its classification, isolation techniques, Storage, Diagnostic and targeted therapy applications. Int J Nanomed. 2020;15:6917–34.

    Article 
    CAS 

    Google Scholar
     

  • Paterna A, Rao ESL, Adamo G, Raccosta S, Picciotto S, Romancino D, Noto R, Touzet N, Bongiovanni A, Manno M. Isolation of extracellular vesicles from microalgae: a renewable and scalable bioprocess. Front Bioeng Biotechnol. 2022;10:12.

    Article 

    Google Scholar
     

  • Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, Bergese P, Wolfram J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. 2018;7:11.

    Article 

    Google Scholar
     

  • He LQ, Zhu D, Wang JP, Wu XY. A highly efficient method for isolating urinary exosomes. Int J Mol Med. 2019;43:83–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Parimon T, Garrett NE, Chen P, Antes TJ. Isolation of extracellular vesicles from murine bronchoalveolar lavage fluid using an ultrafiltration centrifugation technique. Jove-J Vis Exp. 2018. https://doi.org/10.3791/58310.

    Article 

    Google Scholar
     

  • Cardoso RMS, Rodrigues SC, Gomes CF, Duarte FV, Romao M, Leal EC, Freire PC, Neves R, Simoes-Correia J. Development of an optimized and scalable method for isolation of umbilical cord blood-derived small extracellular vesicles for future clinical use. Stem Cells Transl Med. 2021;10:910–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang HY, Lyden D. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization. Nat Protoc. 2019;14:1027–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang P, Yeo JC, Lim CT. Advances in technologies for purification and enrichment of extracellular vesicles. Slas Technol. 2019;24:477–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu BW, Chen XL, Wang JF, Qing XQ, Wang ZP, Ding X, Xie ZS, Niu LL, Guo XJ, Cai TX, et al. Separation and characterization of extracellular vesicles from human plasma by asymmetrical flow field-flow fractionation. Anal Chim Acta. 2020;1127:234–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang DJ, Oh S, Ahn SM, Lee BH, Moon MH. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Proteome Res. 2008;7:3475–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang JS, Lee JC, Byeon SK, Rha KH, Moon MH. Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Anal Chem. 2017;89:2488–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martins TS, Catita J, Rosa IM, Silva O, Henriques AG. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS ONE. 2018;13:16.


    Google Scholar
     

  • Ludwig AK, De Miroschedji K, Doeppner TR, Borger V, Ruesing J, Rebmann V, Durst S, Jansen S, Bremer M, Behrmann E, et al. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J Extracell Vesicles. 2018;7:20.

    Article 

    Google Scholar
     

  • Martinez-Greene JA, Hernandez-Ortega K, Quiroz-Baez R, Resendis-Antonio O, Pichardo-Casas I, Sinclair DA, Budnik B, Hidalgo-Miranda A, Uribe-Querol E, Ramos-Godinez MD, Martinez-Martinez E. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. J Extracell Vesicles. 2021;10:20.

    Article 

    Google Scholar
     

  • Karttunen J, Heiskanen M, Navarro-Ferrandis V, Das Gupta S, Lipponen A, Puhakka N, Rilla K, Koistinen A, Pitkanen A. Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. J Extracell Vesicles. 2019;8:10.

    Article 

    Google Scholar
     

  • Garcia-Romero N, Madurga R, Rackov G, Palacin-Aliana I, Nunez-Torres R, Asensi-Puig A, Carrion-Navarro J, Esteban-Rubio S, Peinado H, Gonzalez-Neira A, et al. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J Translational Med. 2019;17:11.

    Article 

    Google Scholar
     

  • Deregibus MC, Figliolini F, D’Antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi MF, Camussi G. Charge-based precipitation of extracellular vesicles. Int J Mol Med. 2016;38:1359–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan XH, Fang D, Xu YD, Nan TG, Song WP, Gu YY, Gu SJ, Yuan YM, Xin ZC, Zhou LQ, et al. Skimmed bovine milk-derived extracellular vesicles isolated via “Salting-Out”: characterizations and potential functions as Nanocarriers. Front Nutr. 2021;8:15.

    Article 

    Google Scholar
     

  • Zhou SS, Hu T, Zhang F, Tang DZ, Li DK, Cao J, Wei W, Wu YF, Liu SQ. Integrated Microfluidic device for Accurate Extracellular Vesicle quantification and protein markers analysis directly from human whole blood. Anal Chem. 2020;92:1574–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen YS, Chen C, Lai CPK, Lee GB. Isolation and digital counting of extracellular vesicles from blood via membrane-integrated microfluidics. Sens Actuators B. 2022;358:131473–3.

    Article 
    CAS 

    Google Scholar
     

  • Gwak H, Park S, Yu H, Hyun KA, Jung HI. A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles. Analyst. 2022;147:1117–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han BH, Kim S, Seo G, Heo Y, Chung S, Kang JY. Isolation of extracellular vesicles from small volumes of plasma using a microfluidic aqueous two-phase system. Lab Chip. 2020;20:3552–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun N, Tran BV, Peng ZS, Wang J, Zhang C, Yang P, Zhang TX, Widjaja J, Zhang RY, Xia WX, et al. Coupling lipid labeling and click chemistry enables isolation of extracellular vesicles for noninvasive detection of oncogenic gene alterations. Adv Sci. 2022;9:12.

    Article 

    Google Scholar
     

  • Cheng J, Zhu NH, Zhang YJ, Yu Y, Kang K, Yi QY, Wu Y. Hedgehog-inspired immunomagnetic beads for high-efficient capture and release of exosomes. J Mater Chem B. 2022;10:4059–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang KG, Jia MQ, Cheddah S, Zhang ZY, Wang WW, Li XY, Wang Y, Yan C. Peptide ligand-SiO2 microspheres with specific affinity for phosphatidylserine as a new strategy to isolate exosomes and application in proteomics to differentiate hepatic cancer. Bioactive Mater. 2022;15:343–54.

    Article 
    CAS 

    Google Scholar
     

  • Brambilla D, Sola L, Ferretti AM, Chiodi E, Zarovni N, Fortunato D, Criscuoli M, Dolo V, Giusti I, Murdica V, et al. EV separation: release of intact extracellular vesicles immunocaptured on magnetic particles. Anal Chem. 2021;93:5476–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dao TNT, Kim MG, Koo B, Liu HF, Jang YO, Lee HJ, Kim Y, Park YY, Kim HS, Kim CS, Shin Y. Chimeric nanocomposites for the rapid and simple isolation of urinary extracellular vesicles. J Extracell Vesicles. 2022;11:20.

    Article 

    Google Scholar
     

  • Cho S, Jo W, Heo Y, Kang JY, Kwak R, Park J. Isolation of extracellular vesicle from blood plasma using electrophoretic migration through porous membrane. Sens Actuators B-Chemical. 2016;233:289–97.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Deng Z, Lou DD, Wang Y, Wang R, Hu R, Zhang X, Zhu QF, Chen YC, Liu F. High-efficiency separation of Extracellular vesicles from lipoproteins in plasma by Agarose Gel Electrophoresis. Anal Chem. 2020;92:7493–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo N, Nakamura J, Kaneda T, Tateno H, Shimoda A, Ichiki T, Furukawa K, Hirabayashi J, Akiyoshi K, Shiku H. Distinguishing functional exosomes and other extracellular vesicles as a nucleic acid cargo by the anion-exchange method. J Extracell Vesicles. 2022;11:18.

    Article 

    Google Scholar
     

  • Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, Quintero A, Lafrence M, Malik H, Santana MX, Wolfram J. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 2019;9:8001–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi XM, Chen M, Xia SJ, Lu R. Drug loading techniques for exosome-based drug delivery systems. Pharmazie. 2021;76:61–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Zhai ZJ, Ying H, Lu L, Zhang J, Zeng YM. Curcumin primed ADMSCs derived small extracellular vesicle exert enhanced protective effects on osteoarthritis by inhibiting oxidative stress and chondrocyte apoptosis. J Nanobiotechnol. 2022;20:16.

    Article 
    CAS 

    Google Scholar
     

  • Kim S, Kang JH, Cao TGN, Kang SJ, Jeong K, Kang HC, Kwon YJ, Rhee WJ, Ko YT, Shim MS. Extracellular vesicles with high dual drug loading for safe and efficient combination chemo-phototherapy. Biomaterials Sci. 2022;10:2817–30.

    Article 
    CAS 

    Google Scholar
     

  • Kim JK, Youn YJ, Lee YB, Kim SH, Song DK, Shin M, Jin HK, Bae JS, Shrestha S, Hong CW. Extracellular vesicles from dHL-60 cells as delivery vehicles for diverse therapeutics. Sci Rep. 2021;11:11.


    Google Scholar
     

  • Qiu YL, Sun JM, Qiu JP, Chen GL, Wang X, Mu YX, Li KS, Wang WJ. Antitumor Activity of Cabazitaxel and MSC-TRAIL Derived Extracellular vesicles in drug-resistant oral squamous cell carcinoma. Cancer Manage Res. 2020;12:10809–20.

    Article 
    CAS 

    Google Scholar
     

  • Yang Z, Yang Y, Xu YC, Jiang WQ, Shao Y, Xing JH, Chen YB, Han Y. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration. Stem Cell Res Ther. 2021;12:14.

    Article 
    CAS 

    Google Scholar
     

  • Yuana Y, Balachandran B, van der Wurff-Jacobs KMG, Schiffelers RM, Moonen CT. Potential use of extracellular vesicles generated by microbubble-assisted ultrasound as drug nanocarriers for cancer treatment. Int J Mol Sci. 2020;21:3024.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng WP, Wen ZB, Chen HL, Duan YY. Exosomes as carriers for drug delivery in Cancer Therapy. Pharm Res. 2023;40:873–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jorquera-Cordero C, Lara P, Cruz LJ, Schomann T, van Hofslot A, de Carvalho TG, Guedes PMDM, Creemers L, Koning RI, Chan AB, de Araujo Junior RF. Extracellular vesicles from M1-Polarized macrophages combined with hyaluronic acid and a beta-blocker potentiate doxorubicin’s antitumor activity by downregulating tumor-associated macrophages in breast cancer. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14051068.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong CA, Tian J, Wang Z, Gao Y, Wu X, Ding XY, Qiang L, Li GR, Han ZM, Yuan YF, Gao S. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnol. 2019;17:18.

    Article 

    Google Scholar
     

  • Li HZ, Xu W, Li F, Zeng R, Zhang XM, Wang XW, Zhao SJ, Weng J, Li Z, Sun LP. Amplification of anticancer efficacy by co-delivery of doxorubicin and lonidamine with extracellular vesicles. Drug Delivery. 2022;29:192–202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haney MJ, Zhao YL, Jin YS, Li SM, Bago JR, Klyachko NL, Kabanov AV, Batrakova EV. Macrophage-derived extracellular vesicles as drug delivery systems for triple negative breast cancer (TNBC) therapy. J Neuroimmune Pharmacol. 2020;15:487–500.

    Article 
    PubMed 

    Google Scholar
     

  • Ayed Z, Cuvillier L, Dobhal G, Goreham RV. Electroporation of outer membrane vesicles derived from Pseudomonas aeruginosa with gold nanoparticles. Sn Appl Sci. 2019;1:9.

    Article 

    Google Scholar
     

  • Zhu SQ, Huang HY, Liu D, Wen SM, Shen LL, Lin QK. Augmented cellular uptake and homologous targeting of exosome-based drug loaded IOL for posterior capsular opacification prevention and biosafety improvement. Bioactive Mater. 2022;15:469–81.

    Article 
    CAS 

    Google Scholar
     

  • Li BY, Chen X, Qiu W, Zhao RR, Duan JZ, Zhang SJ, Pan ZW, Zhao SL, Guo QD, Qi YH, et al. Synchronous disintegration of ferroptosis defense axis via engineered exosome-conjugated magnetic nanoparticles for glioblastoma therapy. Adv Sci. 2022;9:13.


    Google Scholar
     

  • Tsai HI, Wu YY, Liu XY, Xu ZX, Liu LS, Wang CX, Zhang HX, Huang YS, Wang LL, Zhang WX, et al. Engineered Small Extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating Immune rejection. Adv Sci. 2022;9:13.


    Google Scholar
     

  • Tian R, Wang ZS, Niu RF, Wang HJ, Guan WJ, Chang J. Tumor exosome mimicking nanoparticles for tumor combinatorial chemo-photothermal therapy. Front Bioeng Biotechnol. 2020;8:11.

    Article 

    Google Scholar
     

  • Peng H, Li Y, Ji WH, Zhao RC, Lu ZG, Shen J, Wu YY, Wang JZ, Hao QL, Wang JW, et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson’s disease. ACS Nano. 2022;16:869–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan AR, Ruan L, Jia RD, Wang XF, Wu L, Cao J, Qi XY, Wei Y, Shen S. Tumor exosome-mimicking iron oxide nanoparticles for near infrared-responsive drug delivery. Acs Appl Nano Mater. 2022;5:996–1002.

    Article 
    CAS 

    Google Scholar
     

  • Kimiz-Gebologlu I, Oncel SS. Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Controlled Release. 2022;347:533–43.

    Article 
    CAS 

    Google Scholar
     

  • Guo YH, Hu GW, Xia YG, Li HY, Yuan J, Zhang JT, Chen Y, Guo H, Yang YL, Wang Y, Deng ZF. Eliminating the original cargos of glioblastoma cell-derived small extracellular vesicles for efficient drug delivery to glioblastoma with improved biosafety. Bioactive Mater. 2022;16:204–17.

    Article 
    CAS 

    Google Scholar
     

  • Cao TGN, Kang JH, Kim W, Lim J, Kang SJ, You JY, Hoang QT, Kim WJ, Rhee WJ, Kim C, et al. Engineered extracellular vesicle-based sonotheranostics for dual stimuli-sensitive drug release and photoacoustic imaging-guided chemo-sonodynamic cancer therapy. Theranostics. 2022;12:1247–66.

    Article 
    CAS 

    Google Scholar
     

  • Cao TGN, Kang JH, You JY, Kang HC, Rhee WJ, Ko YT, Shim MS. Safe and targeted Sonodynamic Cancer Therapy using Biocompatible Exosome-Based nanosonosensitizers. ACS Appl Mater Interfaces. 2021;13:25575–88.

    Article 

    Google Scholar
     

  • Thakur A, Sidu RK, Zou H, Alam MK, Yang MS, Lee YJ. Inhibition of glioma cells’ proliferation by doxorubicin-loaded exosomes via microfluidics. Int J Nanomed. 2020;15:8331–43.

    Article 

    Google Scholar
     

  • Wang ZY, Rich J, Hao NJ, Gu YY, Chen CY, Yang SJ, Zhang PR, Huang TJ. Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation. Microsyst Nanoeng. 2022;8:11.

    Article 

    Google Scholar
     

  • Jiang YY, Li JD, Xue X, Yin ZF, Xu K, Su JC. Engineered extracellular vesicles for bone therapy. Nano Today. 2022;44:23.

    Article 

    Google Scholar
     

  • Malekian F, Shamsian A, Kodam SP, Ullah M. Exosome engineering for efficient and targeted drug delivery: current status and future perspective. J Physiol. 2022. https://doi.org/10.1113/JP282799.

    Article 
    PubMed 

    Google Scholar
     

  • Xu M, Feng T, Liu BW, Qiu F, Xu YH, Zhao YH, Zheng Y. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics. 2021;11:8926–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon S, Shin S, Do M, Oh BH, Song Y, Bui VD, Lee ES, Jo DG, Cho YW, Kim DH, Park JH. Engineering approaches for effective therapeutic applications based on extracellular vesicles. J Controlled Release. 2021;330:15–30.

    Article 
    CAS 

    Google Scholar
     

  • Kim HY, Kwon S, Um W, Shin S, Kim CH, Park JH, Kim BS. Functional extracellular vesicles for regenerative medicine. Small. 2022;18:25.


    Google Scholar
     

  • Xu SY, Liu B, Fan JY, Xue CL, Lu Y, Li C, Cui DX. Engineered mesenchymal stem cell-derived exosomes with high CXCR4 levels for targeted siRNA gene therapy against cancer. Nanoscale. 2022;14:4098–113.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai X, Chen K, Yang H, Li B, Zhou TJK, Wang HJ, Zhou HP, Chen SF, Zhou XY, Wei XZ, et al. Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. J Nanobiotechnol. 2021;19:20.

    Article 

    Google Scholar
     

  • Zhu QQ, Tang SL, Zhu YW, Chen D, Huang JLY, Lin JY. Exosomes Derived from CTF1-Modified bone marrow stem cells promote endometrial regeneration and restore fertility. Front Bioeng Biotechnol. 2022;10:13.


    Google Scholar
     

  • Zhang J, Yao TT, Wang YX, Yu J, Liu YY, Lin ZQ. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 2016;17:104–13.

    Article 
    PubMed 

    Google Scholar
     

  • Huang X, Wu W, Jing DD, Yang LK, Guo HY, Wang LT, Zhang WY, Pu FF, Shao ZW. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Controlled Release. 2022;343:107–17.

    Article 
    CAS 

    Google Scholar
     

  • Huang JH, Yu MY, Yin WJ, Liang B, Li A, Li JF, Li XL, Zhao SC, Liu F. Development of a novel RNAi therapy: Engineered miR-31 exosomes promoted the healing of diabetic wounds. Bioactive Mater. 2021;6:2841–53.

    Article 
    CAS 

    Google Scholar
     

  • Zhao ZX, Shuang T, Gao Y, Lu F, Zhang JB, He W, Qu LJ, Chen BL, Hao Q. Targeted delivery of exosomal miR-484 reprograms tumor vasculature for chemotherapy sensitization. Cancer Lett. 2022;530:45–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan XY, Li J, Chen PR. Bioorthogonal chemistry in living animals. Natl Sci Rev. 2017;4:300–2.

    Article 
    CAS 

    Google Scholar
     

  • Wang M, Altinoglu S, Takeda YS, Xu QB. Integrating protein engineering and bioorthogonal click conjugation for extracellular vesicle modulation and intracellular delivery. PLoS ONE. 2015;10:12.


    Google Scholar
     

  • Song S, Shim MK, Lim S, Moon Y, Yang S, Kim J, Hong Y, Yoon HY, Kim IS, Hwang KY, Kim K. In situ one-step fluorescence labeling strategy of exosomes via bioorthogonal click chemistry for real-time exosome tracking in vitro and in vivo. Bioconjug Chem. 2020;31:1562–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu LZ, Faruqu FN, Liam-or R, Abu Abed O, Li DY, Venner K, Errington RJ, Summers H, Wang J, Al-Jamal KT. Design of experiment (DoE)-driven in vitro and in vivo uptake studies of exosomes for pancreatic cancer delivery enabled by copper-free click chemistry-based labelling. J Extracell Vesicles. 2020;9:19.

    Article 

    Google Scholar
     

  • Zheng D, Ruan H, Chen W, Zhang Y, Cui W, Chen H, Shen H. Advances in extracellular vesicle functionalization strategies for tissue regeneration. Bioactive Mater. 2022. https://doi.org/10.1016/j.bioactmat.2022.07.022.

    Article 

    Google Scholar
     

  • Rayamajhi S, Aryal S. Surface functionalization strategies of extracellular vesicles. J Mater Chem B. 2020;8:4552–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, Miao YQ, Wang Y, He SF, Guo LM, Mao JS, Chen MS, Yang YT, Zhang XX, Gan Y. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J Extracell Vesicles. 2022;11:16.

    Article 

    Google Scholar
     

  • Ishikawa R, Yoshida S, Sawada S, Sasaki Y, Akiyoshi K. Development and single-particle analysis of hybrid extracellular vesicles fused with liposomes using viral fusogenic proteins. Febs Open Bio. 2022;12:1178–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li LX, He D, Guo QQ, Zhang ZY, Ru D, Wang LT, Gong K, Liu FF, Duan YR, Li H. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnol. 2022;20:22.


    Google Scholar
     

  • Sun LN, Fan MR, Huang D, Li BQ, Xu RT, Gao F, Chen YZ. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis. Biomaterials. 2021;271:14.

    Article 

    Google Scholar
     

  • Cheng LL, Zhang XG, Tang JJ, Lv QJ, Liu J. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials. 2021;275:15.

    Article 

    Google Scholar
     

  • Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular vesicles by Fusion with Liposomes for the design of Personalized Biogenic Drug Delivery Systems. ACS Nano. 2018;12:6830–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. 2019;94:482–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamura R, Uemoto S, Tabata Y. Augmented liver targeting of exosomes by surface modification with cationized pullulan. Acta Biomater. 2017;57:274–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu SQ, Wang XY, Li ZH, Zhu DS, Cores J, Wang ZZ, Li JL, Mei X, Cheng X, Su T, Cheng K. Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today. 2021;39:12.

    Article 

    Google Scholar
     

  • Li QY, Song YN, Wang QZ, Chen J, Gao JF, Tan HP, Li S, Wu Y, Yang HB, Huang HW, et al. Engineering extracellular vesicles with platelet membranes fusion enhanced targeted therapeutic angiogenesis in a mouse model of myocardial ischemia reperfusion. Theranostics. 2021;11:3916–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Man K, Brunet MY, Jones MC, Cox SC. Engineered Extracellular vesicles: tailored-made nanomaterials for medical applications. Nanomaterials. 2020;10:30.

    Article 

    Google Scholar
     

  • Liang SF, Zuo FF, Yin BC, Ye BC. Delivery of siRNA based on engineered exosomes for glioblastoma therapy by targeting STAT3. Biomaterials Sci. 2022;10:1582–90.

    Article 
    CAS 

    Google Scholar
     

  • Ruan H, Li Y, Wang C, Jiang Y, Han Y, Li Y, Zheng D, Ye J, Chen G, Yang G-y, et al. Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharm Sinica B. 2022. https://doi.org/10.1016/j.apsb.2022.06.007.

    Article 

    Google Scholar
     

  • Fan B, Yang S, Wang YY, Zhang C, Yang JP, Wang LQ, Lv ZQ, Shi XF, Fan ZZ, Yang JK. Indocyanine green-loaded exosomes for image-guided glioma nano-therapy. J Exp Nanosci. 2022;17:187–96.

    Article 
    CAS 

    Google Scholar
     

  • Wu Q, Fu XL, Li X, Li J, Han WJ, Wang YJ. Modification of adipose mesenchymal stem cells-derived small extracellular vesicles with fibrin-targeting peptide CREKA for enhanced bone repair. Bioactive Mater. 2023;20:208–20.

    Article 
    CAS 

    Google Scholar
     

  • Rehman FU, Liu Y, Yang Q, Yang H, Liu R, Zhang D, Muhammad P, Liu Y, Hanif S, Ismail M, et al. Heme Oxygenase-1 targeting exosomes for temozolomide resistant glioblastoma synergistic therapy. J Control Release. 2022;345:696–708.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang CY, Kimura K, Li JC, Richardson JJ, Naito M, Miyata K, Ichiki T, Ejima H. Polydopamine-mediated surface functionalization of exosomes. Chemnanomat. 2021;7:592–5.

    Article 
    CAS 

    Google Scholar
     

  • Cui YZ, Guo YY, Kong L, Shi JY, Liu P, Li R, Geng YT, Gao WH, Zhang ZP, Fu DH. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioactive Mater. 2022;10:207–21.

    Article 
    CAS 

    Google Scholar
     

  • Chen CX, Sun MD, Liu X, Wu WJ, Su LY, Li YM, Liu G, Yan XM. General and mild modification of food-derived extracellular vesicles for enhanced cell targeting. Nanoscale. 2021;13:3061–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bernardi S, Balbi C. Extracellular vesicles: from biomarkers to therapeutic tools. Biology-Basel. 2020;9:6.


    Google Scholar
     

  • Ke CH, Hou H, Su K, Huang CH, Yuan Q, Li SY, Sun JW, Lin Y, Wu CB, Zhao Y, Yuan ZQ. Extracellular vesicle-mediated co-delivery of TRAIL and dinaciclib for targeted therapy of resistant tumors. Biomaterials Sci. 2022;10:1498–514.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Luo JS, Chen XJ, Liu W, Chen TK. Cell membrane coating technology: a promising strategy for biomedical applications. Nano-Micro Lett. 2019;11:46.

    Article 

    Google Scholar
     

  • Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discovery. 2019;18:175–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie WD, Wu GH, Zhang JF, Huang LL, Ding JJ, Jiang AQ, Zhang YH, Liu YH, Li JC, Pu KY, Xie HY. Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew Chem Int Ed. 2020;59:2018–22.

    Article 
    CAS 

    Google Scholar
     

  • Zhang JH, Ji C, Zhang HB, Shi H, Mao F, Qian H, Xu WR, Wang DQ, Pan JM, Fang XJ, et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Sci Adv. 2022;8:13.


    Google Scholar
     

  • Zhang MJ, Shao WX, Yang TR, Liu HL, Guo S, Zhao DY, Weng YH, Liang XJ, Huang YY. Conscription of Immune cells by light-activatable silencing NK-Derived Exosome (LASNEO) for synergetic tumor eradication. Adv Sci. 2022;9:15.


    Google Scholar
     

  • Zhou WX, Zhou Y, Chen XL, Ning TT, Chen HY, Guo Q, Zhang YW, Liu PX, Zhang YJ, Li C, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials. 2021;268:12.

    Article 

    Google Scholar
     

  • Ortiz-Bonilla CJ, Uccello TP, Gerber SA, Lord EM, Messing EM, Lee YF. Bladder cancer extracellular vesicles elicit a CD8 T cell-mediated antitumor immunity. Int J Mol Sci. 2022;23:15.

    Article 

    Google Scholar
     

  • Wang RN, Liang QF, Zhang XR, Di ZN, Wang XH, Di LQ. Tumor-derived exosomes reversing TMZ resistance by synergistic drug delivery for glioma-targeting treatment. Colloids Surf B Biointerfaces. 2022;215:11.

    Article 

    Google Scholar
     

  • Wang J, Tang W, Yang M, Yin Y, Li H, Hu FF, Tang L, Ma XY, Zhang Y, Wang YZ. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials. 2021;273:12.

    Article 

    Google Scholar
     

  • Ge RF, Cao J, Chi JN, Han SC, Liang Y, Xu LS, Liang MT, Sun Y. NIR-guided dendritic nanoplatform for improving antitumor efficacy by combining chemo-phototherapy. Int J Nanomed. 2019;14:4931–47.

    Article 
    CAS 

    Google Scholar
     

  • Ma YY, Zhang YQ, Han R, Li Y, Zhai YW, Qian ZY, Gu YQ, Li SW. A cascade synergetic strategy induced by photothermal effect based on platelet exosome nanoparticles for tumor therapy. Biomaterials. 2022;282:13.

    Article 

    Google Scholar
     

  • Liu J, Yi KZ, Zhang Q, Xu H, Zhang XG, He D, Wang FB, Xiao XH. Strong Penetration-Induced Effective Photothermal therapy by exosome-mediated black Phosphorus Quantum Dots. Small. 2021;17:9.


    Google Scholar
     

  • Zhu DM, Zhang TF, Li Y, Huang CY, Suo M, Xia LG, Xu YH, Li GX, Tang BZ. Tumor-derived exosomes co-delivering aggregation-induced emission luminogens and proton pump inhibitors for tumor glutamine starvation therapy and enhanced type-I photodynamic therapy. Biomaterials. 2022;283:8.

    Article 

    Google Scholar
     

  • Du JB, Wan Z, Wang C, Lu F, Wei MY, Wang DS, Hao Q. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics. 2021;11:8185–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bose RJC, Kumar US, Garcia-Marques F, Zeng YT, Habte F, McCarthy JR, Pitteri S, Massoud TF, Paulmurugan R. Engineered cell-derived vesicles displaying targeting peptide and functionalized with nanocarriers for therapeutic microRNA delivery to triple-negative breast cancer in mice. Adv Healthc Mater. 2022;11:13.


    Google Scholar
     

  • Tao HY, Xu HL, Zuo L, Li C, Qiao G, Guo MY, Zheng LH, Leitgeb M, Lin XK. Exosomes-coated bcl-2 siRNA inhibits the growth of digestive system tumors both in vitro and in vivo. Int J Biol Macromol. 2020;161:470–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan L, Liu YQ, Qu YH, Liu L, Li HX. Exosomes derived from MicroRNA-148b-3p-Overexpressing human umbilical cord mesenchymal stem cells restrain breast Cancer progression. Front Oncol. 2019;9:14.

    Article 

    Google Scholar
     

  • Wang XJ, Ding H, Li ZY, Peng YN, Tan H, Wang CL, Huang GD, Li WP, Ma GH, Wei W. Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduct Target Ther. 2022;7:16.


    Google Scholar
     

  • Huang HQ, Shao LL, Chen Y, Tang L, Liu TQ, Li JX, Zhu HY. Synergistic strategy with hyperthermia therapy based immunotherapy and engineered exosomes-liposomes targeted chemotherapy prevents tumor recurrence and metastasis in advanced breast cancer. Bioeng Translational Med. 2022;7:18.

    Article 

    Google Scholar
     

  • Pan SJ, Zhang YH, Huang M, Deng ZF, Zhang A, Pei LJ, Wang LR, Zhao WY, Ma LJ, Zhang Q, Cui DX. Urinary exosomes-based engineered nanovectors for homologously targeted chemo-chemodynamic prostate cancer therapy via abrogating EGFR/AKT/NF-kB/IkB signaling. Biomaterials. 2021;275:13.

    Article 

    Google Scholar
     

  • Wang XW, Zhang YM, Mu XF, Tu CR, Chung Y, Tsao SW, Chan GCF, Leung WH, Lau YL, Liu YP, Tu WW. Exosomes derived from gamma delta-T cells synergize with radiotherapy and preserve antitumor activities against nasopharyngeal carcinoma in immunosuppressive microenvironment. J Immunother Cancer. 2022;10:15.

    Article 

    Google Scholar
     

  • Chen K, Si YN, Guan JS, Zhou ZX, Kim S, Kim T, Shan L, Willey CD, Zhou LF, Liu XG. Targeted extracellular vesicles delivered Verrucarin A to treat Glioblastoma. Biomedicines. 2022;10:15.


    Google Scholar
     

  • Yang ZM, Li YY, Wang ZH. Recent advances in the application of mesenchymal stem cell-derived exosomes for cardiovascular and neurodegenerative disease therapies. Pharmaceutics. 2022;14:18.

    Article 

    Google Scholar
     

  • Ferrantelli F, Chiozzini C, Leone P, Manfredi F, Federico M. Engineered extracellular vesicles/exosomes as a new tool against neurodegenerative diseases. Pharmaceutics. 2020;12:17.

    Article 

    Google Scholar
     

  • Salarpour S, Barani M, Pardakhty A, Khatami M, Chauhan NPS. The application of exosomes and exosome-nanoparticle in treating brain disorders. J Mol Liq. 2022;350:15.

    Article 

    Google Scholar
     

  • Cheng GW, Liu YJ, Ma R, Cheng GP, Guan YC, Chen XJ, Wu ZF, Chen TK. Anti-parkinsonian therapy: strategies for crossing the blood-brain barrier and nano-biological effects of nanomaterials. Nano-Micro Lett. 2022;14:49.

    Article 

    Google Scholar
     

  • Zhao YL, Haney MJ, Fallon JK, Rodriguez M, Swain CJ, Arzt CJ, Smith PC, Loop MS, Harrison EB, El-Hage N, Batrakova EV. Using extracellular vesicles released by GDNF-Transfected macrophages for therapy of Parkinson disease. Cells. 2022;11:21.

    Article 

    Google Scholar
     

  • Wang Q, Li T, Yang JY, Zhao ZA, Tan KY, Tang SW, Wan MM, Mao C. Engineered exosomes with independent module/cascading function for therapy of parkinson’s disease by multistep targeting and multistage intervention method. Adv Mater. 2022;34:14.


    Google Scholar
     

  • Wang YL, Pang JY, Wang QY, Yan LC, Wang LT, Xing Z, Wang CM, Zhang JF, Dong L. Delivering antisense oligonucleotides across the blood-brain barrier by Tumor Cell-Derived Small apoptotic bodies. Adv Sci. 2021;8:13.

    CAS 

    Google Scholar
     

  • Xue CL, Li XC, Ba L, Zhang MJ, Yang Y, Gao Y, Sun Z, Han Q, Zhao RCH. MSC-Derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson’s disease. Aging and Disease. 2021;12:1211–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izco M, Blesa J, Schleef M, Schmeer M, Porcari R, Al-Shawi R, Ellmerich S, de Toro M, Gardiner C, Seow Y, et al. Systemic exosomal delivery of shRNA minicircles prevents Parkinsonian Pathology. Mol Ther. 2019;27:2111–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima R, Bojar D, Rizzi G, Hamri GCE, El-Baba MD, Saxena P, Auslander S, Tan KR, Fussenegger M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun. 2018;9:10.

    Article 

    Google Scholar
     

  • Wang H, Sui HJ, Zheng Y, Jiang YB, Shi YJ, Liang J, Zhao L. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the tau protein through the AKT/GSK-3 beta pathway. Nanoscale. 2019;11:7481–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi Y, Guo L, Jiang YB, Shi YJ, Sui HJ, Zhao L. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Delivery. 2020;27:745–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Fang F, Sun M, Zhang YF, Hu M, Zhang JF. Extracellular vesicles as bioactive nanotherapeutics: an emerging paradigm for regenerative medicine. Theranostics. 2022;12:4879–903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarubova J, Hasani-Sadrabadi MM, Dashtimoghadam E, Zhang XX, Ansari S, Li S, Moshaverinia A. Engineered delivery of dental stem-cell-derived extracellular vesicles for periodontal tissue regeneration. Adv Healthc Mater. 2022;11:10.


    Google Scholar
     

  • Kim H, Jang Y, Kim EH, Jang H, Cho H, Han G, Song HK, Kim SH, Yang Y. Potential of colostrum-derived exosomes for promoting hair regeneration through the transition from telogen to anagen phase. Front Cell Dev Biology. 2022;10:12.

    Article 

    Google Scholar
     

  • Xia WZ, Li MX, Jiang XY, Huang X, Gu SC, Ye JQ, Zhu LX, Hou M, Zan T. Young fibroblast-derived exosomal microRNA-125b transfers beneficial effects on aged cutaneous wound healing. J Nanobiotechnol. 2022;20:17.

    Article 

    Google Scholar
     

  • Li FY, Wu J, Li DY, Hao LZ, Li YQ, Yi D, Yeung KWK, Chen D, Lu WW, Pan HB, et al. Engineering stem cells to produce exosomes with enhanced bone regeneration effects: an alternative strategy for gene therapy. J Nanobiotechnol. 2022;20:23.


    Google Scholar
     

  • Lan YH, Xie HZ, Jin QR, Zhao XM, Shi Y, Zhou YY, Hu ZH, Ye Y, Huang XY, Sun YJ, et al. Extracellular vesicles derived from neural EGFL-Like 1-modified mesenchymal stem cells improve acellular bone regeneration via the mir-25-5p-SMAD2 signaling axis. Bioactive Mater. 2022;17:457–70.

    Article 
    CAS 

    Google Scholar
     

  • Ko KW, Park SY, Lee EH, Yoo YI, Kim DS, Kim JY, Kwon TG, Han DK. Integrated bioactive scaffold with polydeoxyribonucleotide and stem-cell-derived extracellular vesicles for kidney regeneration. ACS Nano. 2021;15:7575–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song BW, Lee CY, Kim R, Kim WJ, Lee HW, Lee MY, Kim J, Jeong JY, Chang W. Multiplexed targeting of miRNA-210 in stem cell-derived extracellular vesicles promotes selective regeneration in ischemic hearts. Exp Mol Med. 2021;53:695–708.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo ZW, Sun YY, Qi BJ, Lin JR, Chen YS, Xu YZ, Chen JW. Human bone marrow mesenchymal stem cell-derived extracellular vesicles inhibit shoulder stiffness via let-7a/Tgfbr1 axis. Bioactive Mater. 2022;17:344–59.

    Article 
    CAS 

    Google Scholar
     

  • Gao J, Wang SH, Wang ZJ. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials. 2017;135:62–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan FL, Zhong ZR, Wang Y, Feng Y, Mei ZQ, Li H, Chen X, Cai L, Li CH. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnol. 2020;18:15.

    Article 

    Google Scholar
     

  • Ma C, Qi X, Wei YF, Li Z, Zhang HL, Li H, Yu FL, Pu YN, Huang YC, Ren YX. Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioactive Mater. 2023;19:139–54.

    Article 
    CAS 

    Google Scholar
     

  • Han HS, Lee H, You D, Nguyen V, Song DG, Oh BH, Shin S, Choi JS, Kim JD, Pan CH, et al. Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. J Controlled Release. 2020;320:328–36.

    Article 
    CAS 

    Google Scholar
     

  • Wang C, Xing CY, Li ZL, Liu YN, Li QY, Wang YX, Hu J, Yuan LJ, Yang GD. Bioinspired therapeutic platform based on extracellular vesicles for prevention of arterial wall remodeling in hypertension. Bioactive Mater. 2022;8:494–504.

    Article 
    CAS 

    Google Scholar
     

  • Moisseiev E, Anderson JD, Oltjen S, Goswami M, Zawadzki RJ, Nolta JA, Park SS. Protective effect of Intravitreal Administration of Exosomes derived from mesenchymal stem cells on retinal ischemia. Curr Eye Res. 2017;42:1358–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang TT, Wang B, Lv LL, Liu BC. Extracellular vesicle-based Nanotherapeutics: emerging frontiers in anti-inflammatory therapy. Theranostics. 2020;10:8111–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaneko S, Takasawa K, Asada K, Shinkai N, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Komatsu M, Hamamoto R. Epigenetic mechanisms underlying COVID-19 pathogenesis. Biomedicines. 2021;9:15.

    Article 

    Google Scholar
     

  • Rezabakhsh A, Mahdipour M, Nourazarian A, Habibollahi P, Sokullu E, Avci CB, Rahbarghazi R. Application of exosomes for the alleviation of COVID-19-related pathologies. Cell Biochem Funct. 2022;40:430–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazini L, Rochette L, Malka G. Exosomes contribution in COVID-19 patients’ treatment. J Translational Med. 2021;19:8.

    Article 

    Google Scholar
     

  • Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020;29:747–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grigoropoulos I, Tsioulos G, Kastrissianakis A, Shapira S, Arber N, Poulakou G, Syrigos K, Rapti V, Xynogalas I, Leontis K, et al. Safety and potential efficacy of exosomes overexpressing CD24 (EXO-CD24) for the prevention of clinical deterioration in patients with moderate or severe COVID-19: a phase II, randomized, single-blinded study. Open Forum Infect Dis. 2022. https://doi.org/10.1093/ofid/ofac492.991.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gul F, Gonen ZB, Jones OY, Tasli NP, Zararsiz G, Unal E, Ozdarendeli A, Sahin F, Eken A, Yilmaz S, et al. A pilot study for treatment of severe COVID-19 pneumonia by aerosolized formulation of convalescent human immune plasma exosomes (ChipEXO (TM)). Front Immunol. 2022;13:8.

    Article 

    Google Scholar
     

  • Thone MN, Kwon YJ. Extracellular blebs: artificially-induced extracellular vesicles for facile production and clinical translation. Methods. 2020;177:135–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178:113961.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Xu JL, Qian J, Gao XH. Engineering extracellular vesicles for cancer therapy: recent advances and challenges in clinical translation. Biomaterials Sci. 2020;8:6978–91.

    Article 
    CAS 

    Google Scholar
     

  • Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chretien D, Jegou D, Bach JM. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016;6:11.

    Article 

    Google Scholar
     

  • Taghikhani A, Farzaneh F, Sharifzad F, Mardpour S, Ebrahimi M, Hassan ZM. Engineered tumor-derived extracellular vesicles: potentials in cancer immunotherapy. Front Immunol. 2020;11:9.

    Article 

    Google Scholar
     

  • Zhao Y, Li XL, Zhang WB, Yu LL, Wang Y, Deng Z, Liu MW, Mo SS, Wang RN, Zhao JM, et al. Trends in the biological functions and medical applications of extracellular vesicles and analogues. Acta Pharm Sinica B. 2021;11:2114–35.

    Article 
    CAS 

    Google Scholar
     

  • Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv. 2022;54:19.

    Article 

    Google Scholar
     

  • Liu DSK, Upton FM, Rees E, Limb C, Jiao LR, Krell J, Frampton AE. Size-exclusion chromatography as a technique for the investigation of novel extracellular vesicles in cancer. Cancers. 2020;12:19.

    Article 

    Google Scholar
     

  • Mohammadi M, Zargartalebi H, Salahandish R, Aburashed R, Yong KW, Sanati-Nezhad A. Emerging technologies and commercial products in exosome-based cancer diagnosis and prognosis. Biosens Bioelectron. 2021;183:27.

    Article 

    Google Scholar
     

  • Janouskova O, Herma R, Semeradtova A, Poustka D, Liegertova M, Malinska HA, Maly J. Conventional and nonconventional sources of exosomes-isolation methods and influence on their downstream biomedical application. Front Mol Biosci. 2022;9:20.

    Article 

    Google Scholar
     

  • Yu D, Li YX, Wang MY, Gu JM, Xu WR, Cai H, Fang XJ, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 2022;21:33.

    Article 

    Google Scholar
     

  • Li P, Kaslan M, Lee SH, Yao J, Gao ZQ. Progress in Exosome isolation techniques. Theranostics. 2017;7:789–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haney MJ, Zhao YL, Jin YS, Batrakova EV. Extracellular vesicles as drug carriers for enzyme replacement therapy to treat CLN2 Batten disease: optimization of drug administration routes. Cells. 2020;9:16.

    Article 

    Google Scholar
     

  • Liu W, Yu MY, Chen F, Wang LQ, Ye C, Chen Q, Zhu Q, Xie D, Shao MZ, Yang LL. A novel delivery nanobiotechnology: engineered miR-181b exosomes improved osteointegration by regulating macrophage polarization. J Nanobiotechnol. 2021;19:18.

    Article 

    Google Scholar
     

  • Xiao Y, Tian J, Wu WC, Gao YH, Guo YX, Song SJ, Gao R, Wang LB, Wu XY, Zhang Y, Li X. Targeting central nervous system extracellular vesicles enhanced triiodothyronine remyelination effect on experimental autoimmune encephalomyelitis. Bioactive Mater. 2022;9:373–84.

    Article 
    CAS 

    Google Scholar
     

  • Han SQ, Li GC, Jia M, Zhao YL, He CL, Huang MX, Jiang LW, Wu MJ, Yang JH, Ji XQ, et al. Delivery of Anti-miRNA-221 for colorectal carcinoma therapy using modified cord blood mesenchymal stem cells-derived Exosomes. Front Mol Biosci. 2021;8:8.

    Article 

    Google Scholar
     

  • Wu XY, Liao BY, Xiao D, Wu WC, Xiao Y, Alexander T, Song SJ, Zhao ZH, Zhang YA, Wang ZH, et al. Encapsulation of bryostatin-1 by targeted exosomes enhances remyelination and neuroprotection effects in the cuprizone-induced demyelinating animal model of multiple sclerosis. Biomaterials Sci. 2022;10:714–27.

    Article 
    CAS 

    Google Scholar
     

  • Kim G, Lee Y, Ha J, Han S, Lee M. Engineering exosomes for pulmonary delivery of peptides and drugs to inflammatory lung cells by inhalation. J Controlled Release. 2021;330:684–95.

    Article 
    CAS 

    Google Scholar
     

  • Lin D, Zhang HY, Liu R, Deng T, Ning T, Bai M, Yang YC, Zhu KG, Wang JY, Duan JJ, et al. iRGD-modified exosomes effectively deliver CPT1A siRNA to colon cancer cells, reversing oxaliplatin resistance by regulating fatty acid oxidation. Mol Oncol. 2021;15:3430–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Y, Wu JH, Gu WH, Huang YL, Tong ZC, Huang LJ, Tan JL. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv Sci. 2018;5:9.

    Article 

    Google Scholar
     

  • Matsuki Y, Yanagawa T, Sumiyoshi H, Yasuda J, Nakao S, Goto M, Shibata-Seki T, Akaike T, Inagaki Y. Modification of exosomes with carbonate apatite and a glycan polymer improves transduction efficiency and target cell selectivity. Biochem Biophys Res Commun. 2021;583:93–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You DG, Oh BH, Nguyen V, Lim GT, Um W, Jung JM, Jeon J, Choi JS, Choi YC, Jung YJ, et al. Vitamin A-coupled stem cell-derived extracellular vesicles regulate the fibrotic cascade by targeting activated hepatic stellate cells in vivo. J Controlled Release. 2021;336:285–95.

    Article 
    CAS 

    Google Scholar
     

  • Li D, Yao SR, Zhou ZF, Shi J, Huang ZH, Wu ZM. Hyaluronan decoration of milk exosomes directs tumor -specific delivery of doxorubicin. Carbohydr Res. 2020;493:5.

    Article 

    Google Scholar
     

  • Zheng LR, Zhang BY, Chu HS, Cheng P, Li HY, Huang KL, He XY, Xu WT. Assembly andin vitroassessment of a powerful combination: aptamer-modified exosomes combined with gold nanorods for effective photothermal therapy. Nanotechnology. 2020;31:11.

    Article 

    Google Scholar
     

  • Bagheri E, Abnous K, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020;261:10.

    Article 

    Google Scholar
     

  • Kang CS, Han P, Lee JS, Lee D, Kim D. Anchor, Spacer, and ligand-modified Engineered Exosomes for Trackable targeted therapy. Bioconjug Chem. 2020;31:2541–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phung CD, Pham TT, Nguyen HT, Nguyen TT, Ou WQ, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater. 2020;115:371–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li S, Wu YJ, Ding F, Yang JP, Li J, Gao XH, Zhang C, Feng J. Engineering macrophage-derived exosomes for targeted chemotherapy of triple-negative breast cancer. Nanoscale. 2020;12:10854–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Translational Med. 2005;3:8.

    Article 

    Google Scholar
     

  • Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Translational Med. 2005;3:13.

    Article 

    Google Scholar
     

  • Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther. 2008;16:782–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesik F, Laplanche A, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5:13.

    Article 

    Google Scholar
     

  • Gao Y, Zhang H, Zhou N, Xu P, Wang J, Gao Y, Jin X, Liang X, Lv J, Zhang Y, et al. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma. Nat Biomed Eng. 2020;4:743–53.

    Article 
    CAS 
    PubMed 

    Google Scholar