Nanotechnology

Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation | Journal of Nanobiotechnology


  • Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of β-Cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29(5):1130–9. https://doi.org/10.2337/dc05-2179.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020;126(11):1549–64. https://doi.org/10.1161/CIRCRESAHA.119.315896.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875–80. https://doi.org/10.1038/nature05487.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15(9):639–60. https://doi.org/10.1038/nrd.2016.75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13(11):633–43. https://doi.org/10.1038/nrendo.2017.90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1(1):1–22. https://doi.org/10.1038/nrdp.2015.19.

    Article 

    Google Scholar
     

  • Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(9):939–49. https://doi.org/10.1161/01.RES.0000163635.62927.34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. https://doi.org/10.1038/s41591-019-0675-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017;127(1):55–64. https://doi.org/10.1172/JCI88881.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinghe D, Liddle C, Weltman M, George J. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 2002;35(2):373–9. https://doi.org/10.1053/jhep.2002.30692.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sibuyi NRS, Moabelo KL, Meyer M, Onani MO, Dube A, Madiehe AM. Nanotechnology advances towards development of targeted-treatment for obesity. J Nanobiotechnol. 2019;17(1):122. https://doi.org/10.1186/s12951-019-0554-3.

    Article 

    Google Scholar
     

  • Puré E, Cuff CA. A Crucial Role for CD44 in Inflammation. Trends Mol Med. 2001;7(5):213–21. https://doi.org/10.1016/S1471-4914(01)01963-3.

    Article 
    PubMed 

    Google Scholar
     

  • Kuwahara G, Hashimoto T, Tsuneki M, Yamamoto K, Assi R, Foster TR, Hanisch JJ, Bai H, Hu H, Protack CD, Hall MR, Schardt JS, Jay SM, Madri JA, Kodama S, Dardik A. CD44 promotes inflammation and extracellular matrix production during arteriovenous fistula maturation. Arterioscler Thromb Vasc Biol. 2017;37(6):1147–56. https://doi.org/10.1161/ATVBAHA.117.309385.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang HS, Liao G, DeGraff LM, Gerrish K, Bortner CD, Garantziotis S, Jetten AM. CD44 plays a critical role in regulating diet-induced adipose inflammation, hepatic steatosis, and insulin resistance. PLoS ONE. 2013;8(3):e58417. https://doi.org/10.1371/journal.pone.0058417.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, Sirota M, Morgan AA, Chen R, Ohtsu H, Maeda S, Kadowaki T, Butte AJ. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci. 2012;109(18):7049–54. https://doi.org/10.1073/pnas.1114513109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang M, Yao M, Yang J, Zheng W-J, Wang L, Yao D-F. Abnormal CD44 activation of hepatocytes with nonalcoholic fatty accumulation in rat hepatocarcinogenesis. World J Gastrointestinal Oncol. 2020;12(1):66–76. https://doi.org/10.4251/wjgo.v12.i1.66.

    Article 

    Google Scholar
     

  • Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet CM, Schneck A-S, Bertola A, Saint-Paul M-C, Iannelli A, Gugenheim J, Anty R, Tran A, Bailly-Maitre B, Gual P. CD44 Is a key player in non-alcoholic steatohepatitis. J Hepatol. 2017;67(2):328–38. https://doi.org/10.1016/j.jhep.2017.03.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kodama K, Toda K, Morinaga S, Yamada S, Butte AJ. Anti-CD44 antibody treatment lowers hyperglycemia and improves insulin resistance, adipose inflammation, and hepatic steatosis in diet-induced obese mice. Diabetes. 2014;64(3):867–75. https://doi.org/10.2337/db14-0149.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61(7):1303–13. https://doi.org/10.1016/0092-8674(90)90694-A.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi KY, Han HS, Lee ES, Shin JM, Almquist BD, Lee DS, Park JH. Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: beyond CD44-mediated drug delivery. Adv Mater. 2019;31(34):1803549. https://doi.org/10.1002/adma.201803549.

    Article 
    CAS 

    Google Scholar
     

  • Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41–56. https://doi.org/10.1002/adma.201003963.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Del. 2018;25(1):766–72. https://doi.org/10.1080/10717544.2018.1450910.

    Article 
    CAS 

    Google Scholar
     

  • Lee GY, Kim J-H, Choi KY, Yoon HY, Kim K, Kwon IC, Choi K, Lee B-H, Park JH, Kim I-S. Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials. 2015;53:341–8. https://doi.org/10.1016/j.biomaterials.2015.02.089.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim H-Y, Kim H-R, Kang M-G, Trang NTD, Baek H-J, Moon J-D, Shin J-H, Suh S-P, Ryang D-W, Kook H, Shin M-G. Profiling of biomarkers for the exposure of polycyclic aromatic hydrocarbons: lamin-A/C isoform 3, poly[ADP-Ribose] polymerase 1, and mitochondria copy number are identified as universal biomarkers. BioMed Res Int. 2014;2014:e605135. https://doi.org/10.1155/2014/605135.

    Article 
    CAS 

    Google Scholar
     

  • Altman R, Bedi A, Manjoo A, Niazi F, Shaw P, Mease P. Anti-inflammatory effects of intra-articular hyaluronic acid: a systematic review. Cartilage. 2019;10(1):43–52. https://doi.org/10.1177/1947603517749919.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengupta S, Pal S, Pal A, Maity S, Sarkar K, Das M. A review on synthesis, toxicity profile and biomedical applications of graphene quantum dots (GQDs). Inorg Chim Acta. 2023;557:121677. https://doi.org/10.1016/j.ica.2023.121677.

    Article 
    CAS 

    Google Scholar
     

  • Chen F, Gao W, Qiu X, Zhang H, Liu L, Liao P, Fu W, Luo Y. Graphene quantum dots in biomedical applications: recent advances and future challenges. Front Lab Med. 2017;1(4):192–9. https://doi.org/10.1016/j.flm.2017.12.006.

    Article 

    Google Scholar
     

  • Feng L, Li K, Shi X, Gao M, Liu J, Liu Z. Smart PH-Responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv Healthcare Mater. 2014;3(8):1261–71. https://doi.org/10.1002/adhm.201300549.

    Article 
    CAS 

    Google Scholar
     

  • Fasbender S, Zimmermann L, Cadeddu R-P, Luysberg M, Moll B, Janiak C, Heinzel T, Haas R. The low toxicity of graphene quantum dots is reflected by marginal gene expression changes of primary human hematopoietic stem cells. Sci Rep. 2019;9(1):12028. https://doi.org/10.1038/s41598-019-48567-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao C, Song X, Liu Y, Fu Y, Ye L, Wang N, Wang F, Li L, Mohammadniaei M, Zhang M, Zhang Q, Liu J. Synthesis of graphene quantum dots and their applications in drug delivery. J Nanobiotechnol. 2020;18(1):142. https://doi.org/10.1186/s12951-020-00698-z.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–57. https://doi.org/10.1016/j.actbio.2013.08.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woo S-L, Xu H, Li H, Zhao Y, Hu X, Zhao J, Guo X, Guo T, Botchlett R, Qi T, Pei Y, Zheng J, Xu Y, An X, Chen L, Chen L, Li Q, Xiao X, Huo Y, Wu C. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS ONE. 2014;9(3):e91111. https://doi.org/10.1371/journal.pone.0091111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasamsetti SB, Karnewar S, Kanugula AK, Thatipalli AR, Kumar JM, Kotamraju S. Metformin inhibits monocyte-to-macrophage differentiation via AMPK-mediated inhibition of STAT3 activation: potential role in atherosclerosis. Diabetes. 2015;64(6):2028–41. https://doi.org/10.2337/db14-1225.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85. https://doi.org/10.1007/s00125-017-4342-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Liu Z, Wang J, Ye H, Wan Y, Du X, Sun X, Zhou M, Lin Y, Jing P, Zhong Z. Nanoformulated metformin enhanced the treatment of spinal cord injury. Chem Eng J. 2022;446:137227. https://doi.org/10.1016/j.cej.2022.137227.

    Article 
    CAS 

    Google Scholar
     

  • Bouriche S, Alonso-García A, Cárceles-Rodríguez CM, Rezgui F, Fernández-Varón E. An in vivo pharmacokinetic study of metformin microparticles as an oral sustained release formulation in rabbits. BMC Vet Res. 2021;17(1):315. https://doi.org/10.1186/s12917-021-03016-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–26. https://doi.org/10.1016/j.addr.2008.08.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song E, Han W, Li C, Cheng D, Li L, Liu L, Zhu G, Song Y, Tan W. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and ph-responsive anticancer drug delivery. ACS Appl Mater Interf. 2014;6(15):11882–90. https://doi.org/10.1021/am502423r.

    Article 
    CAS 

    Google Scholar
     

  • Abdullah-Al-Nahain J-EL, In I, Lee H, Lee KD, Jeong JH, Park SY. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharmaceutics. 2013;10(10):3736–44. https://doi.org/10.1021/mp400219u.

    Article 
    CAS 

    Google Scholar
     

  • Vahedi N, Tabandeh F, Mahmoudifard M. Hyaluronic acid-graphene quantum dot nanocomposite: potential target drug delivery and cancer cell imaging. Biotechnol Appl Biochem. 2022;69(3):1068–79. https://doi.org/10.1002/bab.2178.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Shi H, Wang Y, Jia X, Tang C, Zhang J, Yang S. Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon. 2014;69:379–89. https://doi.org/10.1016/j.carbon.2013.12.039.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Qu Q, Yang A, Wang J, Cheng W, Deng Y, Zhou A, Lu T, Xiong R, Huang C. Chitosan enhanced the stability and antibiofilm activity of self-propelled prussian blue micromotor. Carbohydrate Poly. 2023;299:120134. https://doi.org/10.1016/j.carbpol.2022.120134.

    Article 
    CAS 

    Google Scholar
     

  • Qu Q, Zhang X, Yang A, Wang J, Cheng W, Zhou A, Deng Y, Xiong R, Huang C. Spatial confinement of multi-enzyme for cascade catalysis in cell-inspired all-aqueous multicompartmental microcapsules. J Colloid Interface Sci. 2022;626:768–74. https://doi.org/10.1016/j.jcis.2022.06.128.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkar K, Dutta K, Chatterjee A, Sarkar J, Das D, Prasad A, Chattopadhyay D, Acharya K, Das M, Verma SK, De S. Nanotherapeutic potential of antibacterial folic acid-functionalized nanoceria for wound-healing applications. Nanomedicine. 2023;18(2):109–23. https://doi.org/10.2217/nnm-2022-0233.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Draper, H. H.; Hadley, M. [43] Malondialdehyde Determination as Index of Lipid Peroxidation. In Methods in Enzymology; Oxygen Radicals in Biological Systems Part B: Oxygen Radicals and Antioxidants; Academic Press, 1990; Vol. 186, pp 421–431. https://doi.org/10.1016/0076-6879(90)86135-I.

  • Aebi, H. [13] Catalase in Vitro. In Methods in Enzymology; Oxygen Radicals in Biological Systems; Academic Press, 1984; Vol. 105, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3.

  • Das A, Bank S, Chatterjee S, Paul N, Sarkar K, Chatterjee A, Chakraborty S, Banerjee C, Majumdar A, Das M, Ghosh S. Bifenthrin disrupts cytochrome c oxidase activity and reduces mitochondrial DNA copy number through oxidative damage in pool barb (Puntius Sophore). Chemosphere. 2023;332:138848. https://doi.org/10.1016/j.chemosphere.2023.138848.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salbitani G, Bottone C, Carfagna S. Determination of reduced and total glutathione content in extremophilic microalga galdieria phlegrea. Bio-Protoc. 2017;7(13):e2372–e2372.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee A, Sarkar K, Bank S, Ghosh S, Pal D, Saraf S, Wakle D, Roy B, Chakraborty S, Bankura B, Debprasad C, Das M. Homozygous GRHPR C 494G>a mutation is deleterious that causes early onset of nephrolithiasis in West Bengal India. Front Mole Biosci. 2022. https://doi.org/10.3389/fmolb.2022.1049620.

    Article 

    Google Scholar
     

  • Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells | ACS Applied Materials & Interfaces. https://pubs.acs.org/doi/https://doi.org/10.1021/acsami.5b02199 Accessed 15 July 2023.

  • Deng Y, Lu T, Zhang X, Zeng Z, Tao R, Qu Q, Zhang Y, Zhu M, Xiong R, Huang C. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration. J Memb Sci. 2022;660:120857. https://doi.org/10.1016/j.memsci.2022.120857.

    Article 
    CAS 

    Google Scholar
     

  • Dutta K, De S, Das B, Bera S, Guria B, Ali MS, Chattopadhyay D. Development of an efficient immunosensing platform by exploring single-walled carbon nanohorns (SWCNHs) and nitrogen doped graphene quantum dot (N-GQD) nanocomposite for early detection of cancer biomarker. ACS Biomater Sci Eng. 2021;7(12):5541–54. https://doi.org/10.1021/acsbiomaterials.1c00753.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh T, Prasad E. White-light emission from unmodified graphene oxide quantum dots. J Phys Chem C. 2015;119(5):2733–42. https://doi.org/10.1021/jp511787a.

    Article 
    CAS 

    Google Scholar
     

  • Roy H, Brahma CK, Nandi S, Parida KR. Formulation and design of sustained release matrix tablets of metformin hydrochloride: influence of hypromellose and polyacrylate polymers. Int J Appl Basic Med Res. 2013;3(1):55–63. https://doi.org/10.4103/2229-516X.112242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121(6):2094–101. https://doi.org/10.1172/JCI45887.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111–7. https://doi.org/10.1172/JCI57132.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petta S, Gastaldelli A, Rebelos E, Bugianesi E, Messa P, Miele L, Svegliati-Baroni G, Valenti L, Bonino F. Pathophysiology of non alcoholic fatty liver disease. Int J Mol Sci. 2016;17(12):2082. https://doi.org/10.3390/ijms17122082.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr RM, Oranu A, Khungar V. Nonalcoholic fatty liver disease: pathophysiology and management. Gastroenterol Clin North Am. 2016;45(4):639–52. https://doi.org/10.1016/j.gtc.2016.07.003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinaik R, Barayan D, Jeschke MG. NLRP3 inflammasome in inflammation and metabolism: identifying novel roles in postburn adipose dysfunction. Endocrinology. 2020;161(9):116. https://doi.org/10.1210/endocr/bqaa116.

    Article 
    CAS 

    Google Scholar
     

  • Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, Shirasuna K, Koyama Y, Sato-Tomita A, Matsuzaka T, Tomoda H, Park S-Y, Shibayama N, Shimano H, Kasahara T, Takahashi M. Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arterioscler Thromb Vasc Biol. 2018;38(4):744–56. https://doi.org/10.1161/ATVBAHA.117.310581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–25. https://doi.org/10.1172/JCI28898.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi X, Wang X, Li Q, Su M, Chew E, Wong ET, Lacza Z, Radda GK, Tergaonkar V, Han W. Nuclear factor ΚB (NF-ΚB) suppresses food intake and energy expenditure in mice by directly activating the pomc promoter. Diabetologia. 2013;56(4):925–36. https://doi.org/10.1007/s00125-013-2831-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Li G, Tao S, Xia P, Chaudhry N, Kaura S, Stone SS, Liu M. Ginkgo biloba extract reduces cardiac and brain inflammation in rats fed a HFD and exposed to chronic mental stress through NF-κB inhibition. Med Inflam. 2022;2022:e2408598. https://doi.org/10.1155/2022/2408598.

    Article 
    CAS 

    Google Scholar
     

  • Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W. IκB Kinases phosphorylate NF-ΚB P65 subunit on serine 536 in the transactivation domain *. J Biol Chem. 1999;274(43):30353–6. https://doi.org/10.1074/jbc.274.43.30353.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christian F, Smith EL, Carmody RJ. The regulation of NF-ΚB subunits by phosphorylation. Cells. 2016;5(1):12. https://doi.org/10.3390/cells5010012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med. 2008;14(12):539–49. https://doi.org/10.1016/j.molmed.2008.09.007.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hattori Y, Suzuki K, Hattori S, Kasai K. Metformin inhibits cytokine-induced nuclear factor ΚB activation Via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension. 2006;47(6):1183–8. https://doi.org/10.1161/01.HYP.0000221429.94591.72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • del Fresno C, Otero K, Gómez-García L, González-León MC, Soler-Ranger L, Fuentes-Prior P, Escoll P, Baos R, Caveda L, García F, Arnalich F, López-Collazo E. Tumor cells deactivate human monocytes by up-regulating IL-1 receptor associated kinase-M expression via CD44 and TLR4. J Immunol. 2005;174(5):3032–40. https://doi.org/10.4049/jimmunol.174.5.3032.

    Article 
    PubMed 

    Google Scholar
     

  • Hubbard LLN, Moore BB. IRAK-M regulation and function in host defense and immune homeostasis. Infect Dis Rep. 2010;2(1):e9. https://doi.org/10.4081/idr.2010.e9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia F, Chen L, Fang L, Chen W. IRAK-M deletion aggravates acute inflammatory response and mitochondrial respiratory dysfunction following myocardial infarction: a bioinformatics analysis. J Proteomics. 2022;257:104512. https://doi.org/10.1016/j.jprot.2022.104512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun A, Mu L, Hu X. Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl Mater Interfaces. 2017;9(14):12241–52. https://doi.org/10.1021/acsami.7b00306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren C, Hu X, Zhou Q. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv Sci. 2018;5(5):1700595. https://doi.org/10.1002/advs.201700595.

    Article 
    CAS 

    Google Scholar
     

  • Sudha PN, Rose MH. Chapter nine—beneficial effects of hyaluronic acid. Adv Food Nutr Res. 2014;72:137–76. https://doi.org/10.1016/B978-0-12-800269-8.00009-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patiño-Herrera R, Louvier-Hernández JF, Escamilla-Silva EM, Chaumel J, Escobedo AGP, Pérez E. Prolonged release of metformin by SiO2 nanoparticles pellets for type II diabetes control. Eur J Pharm Sci. 2019;131:1–8. https://doi.org/10.1016/j.ejps.2019.02.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lari AS, Zahedi P, Ghourchian H, Khatibi A. Microfluidic-based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes therapy: in vitro and in vivo assessments. Carbohyd Polym. 2021;261:117889. https://doi.org/10.1016/j.carbpol.2021.117889.

    Article 
    CAS 

    Google Scholar
     

  • Cesur S, Cam ME, Sayın FS, Su S, Harker A, Edirisinghe M, Gunduz O. Metformin-loaded polymer-based microbubbles/nanoparticles generated for the treatment of type 2 diabetes mellitus. Langmuir. 2022;38(17):5040–51. https://doi.org/10.1021/acs.langmuir.1c00587.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Bhanjana G, Verma RK, Dhingra D, Dilbaghi N, Kim K-H. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol. 2017;69(2):143–50. https://doi.org/10.1111/jphp.12672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenechukwu FC, Nnamani DO, Duhu JC, Nmesirionye BU, Momoh MA, Akpa PA, Attama AA. Potential enhancement of metformin hydrochloride in solidified reverse micellar solution-based PEGylated lipid nanoparticles targeting therapeutic efficacy in diabetes treatment. Heliyon. 2022. https://doi.org/10.1016/j.heliyon.2022.e09099.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain AK, Upadhyay R, Mishra K, Jain SK. Gastroretentive metformin loaded nanoparticles for the effective management of type-2 diabetes mellitus. Current Drug Del. 2022;19(1):93–103.

    Article 
    CAS 

    Google Scholar
     

  • Huang K, Liu X, Lv Z, Zhang D, Zhou Y, Lin Z, Guo J. MMP9-responsive graphene oxide quantum dot-based nano-in-micro drug delivery system for combinatorial therapy of choroidal neovascularization. Small. 2023. https://doi.org/10.1002/smll.202207335.

    Article 
    PubMed 

    Google Scholar
     

  • Shahabi M, Raissi H. A new insight into the transfer and delivery of Anti-SARS-CoV-2 Drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation. RSC Adv. 2022;12(22):14167–74. https://doi.org/10.1039/D2RA01420C.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gui W, Zhang J, Chen X, Yu D, Ma Q. N-Doped graphene quantum Dot@mesoporous silica nanoparticles modified with hyaluronic acid for fluorescent imaging of tumor cells and drug delivery. Microchim Acta. 2017;185(1):66. https://doi.org/10.1007/s00604-017-2598-0.

    Article 
    CAS 

    Google Scholar
     

  • Tao J, Feng S, Liu B, Pan J, Li C, Zheng Y. Hyaluronic acid conjugated nitrogen-doped graphene quantum dots for identification of human breast cancer cells. Biomed Mater. 2021. https://doi.org/10.1088/1748-605X/ac0d93.

    Article 
    PubMed 

    Google Scholar
     

  • Asghari S, Mahmoudifard M. The detection of the captured circulating tumor cells on the core-shell nanofibrous membrane using hyaluronic acid-functionalized graphene quantum dots. J Biomed Mater Res B Appl Biomater. 2023;111(5):1121–32. https://doi.org/10.1002/jbm.b.35219.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rho JG, Han HS, Han JH, Lee H, Nguyen VQ, Lee WH, Kwon S, Heo S, Yoon J, Shin HH, Lee E, Kang H, Yang S, Lee EK, Park JH, Kim W. Self-assembled hyaluronic acid nanoparticles: implications as a nanomedicine for treatment of type 2 diabetes. J Control Rel. 2018;279:89–98. https://doi.org/10.1016/j.jconrel.2018.04.006.

    Article 
    CAS 

    Google Scholar
     

  • Yang L, Zhang L, Hu J, Wang W, Liu X. Promote anti-inflammatory and angiogenesis using a hyaluronic acid-based hydrogel with MiRNA-laden nanoparticles for chronic diabetic wound treatment. Int J Biol Macromol. 2021;166:166–78. https://doi.org/10.1016/j.ijbiomac.2020.10.129.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beldman TJ, Senders ML, Alaarg A, Pérez-Medina C, Tang J, Zhao Y, Fay F, Deichmöller J, Born B, Desclos E, van der Wel NN, Hoebe RA, Kohen F, Kartvelishvily E, Neeman M, Reiner T, Calcagno C, Fayad ZA, de Winther MPJ, Lutgens E, Mulder WJM, Kluza E. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano. 2017;11(6):5785–99. https://doi.org/10.1021/acsnano.7b01385.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Z-W, Shi Y, Zhai Y-Y, Du C-C, Zhai J, Yu R-J, Kou L, Xiao J, Zhao Y-Z, Yao Q. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney injury. J Control Rel. 2021;334:275–89. https://doi.org/10.1016/j.jconrel.2021.04.033.

    Article 
    CAS 

    Google Scholar