Nanotechnology

Inhalable hybrid nanovaccines with virus-biomimetic structure boost protective immune responses against SARS-CoV-2 variants | Journal of Nanobiotechnology


  • Kang B, Lee Y, Lim J, Yong D, Ki Choi Y, Woo Yoon S, Seo S, Jang S, Uk Son S, Kang T, et al. FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2. Chem Eng J. 2022;442:136143.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong H, Lee JJ, Lee J, Na K. A multiligand architectural photosensitizer that targets hemagglutinin on envelope of influenza virus for photodynamic inactivation. Small. 2020;16:2000556.

    Article 
    CAS 

    Google Scholar
     

  • Jeong H, Lee CS, Lee J, Lee J, Hwang HS, Lee M, Na K. Hemagglutinin nanoparticulate vaccine with controlled photochemical immunomodulation for pathogenic influenza-specific immunity. Adv Sci. 2021;8:2100118.

    Article 
    CAS 

    Google Scholar
     

  • Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, Zhang X, Deng J, Chen T, Song Z, et al. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity. 2020;53:1315–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang C, Wang S, Chen Y, Zhao J, Han S, Zhao G, Kang J, Liu Y, Wang L, Wang X, et al. Membrane nanoparticles derived from ACE2-rich cells block SARS-CoV-2 infection. ACS Nano. 2021;15:6340–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Liu Y, Xia H, Zou J, Weaver SC, Swanson KA, Cai H, Cutler M, Cooper D, Muik A, et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature. 2021;596:273–5.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu CY, Kao SE, Tseng YC, Lin YP, Hou JT, Wu LY, Chiu S, Ma CA, Hsiao PW, Hsiao J, Chen JR. Pilot-scale production of inactivated monoglycosylated split H1N1 influenza virus vaccine provides cross-strain protection against influenza viruses. Antiviral Res. 2023;216:105640.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atalis A, Keenum MC, Pandey B, Beach A, Pradhan P, Vantucci C, O’Farrell L, Noel R, Jain R, Hosten J, et al. Nanoparticle-delivered TLR4 and RIG-I agonists enhance immune response to SARS-CoV-2 subunit vaccine. J Controlled Release. 2022;347:476–88.

    Article 
    CAS 

    Google Scholar
     

  • Ge C, Zhu J, Ye H, Wei Y, Lei Y, Zhou R, Song Z, Yin L. Rational construction of protein-mimetic nano-switch systems based on secondary structure transitions of synthetic polypeptides. J Am Chem Soc. 2023;145:11206–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han X, Alameh MG, Butowska K, Knox JJ, Lundgreen K, Ghattas M, Gong N, Xue L, Xu Y, Lavertu M, et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat Nanotechnol. 2023;18:1105–14.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao T, Israelow B, Peña Hernández MA, Suberi A, Zhou L, Luyten S, Reschke M, Dong H, Homer RJ, Saltzman WM, Iwasaki A. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science. 2022;378:2523.

    Article 

    Google Scholar
     

  • Lam JH, Shivhare D, Chia TW, Chew SL, Sinsinbar G, Aw TY, Wong S, Venkataraman S, Lim FWI, Vandepapeliere P, Nallani M. Artificial cell membrane polymersome-based intranasal beta spike formulation as a second generation COVID-19 vaccine. ACS Nano. 2022;16:16757–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aksyuk AA, Bansal H, Wilkins D, Stanley AM, Sproule S, Maaske J, Sanikommui S, Hartman WR, Sobieszczyk ME, Falsey AR, Kelly EJ. AZD1222-induced nasal antibody responses are shaped by prior SARS-CoV-2 infection and correlate with virologic outcomes in breakthrough infection. Cell Rep Med. 2023;4:100882.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Jiang Y, He J, Chen J, Qi R, Yuan L, Shao T, Zhao H, Chen C, Chen Y, et al. Intranasal influenza-vectored COVID-19 vaccine restrains the SARS-CoV-2 inflammatory response in hamsters. Nat Commun. 2023;14:4117.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng QF, Tai W, Tian M, Zhuang X, Pan Y, Lai J, Xu Y, Xu Z, Li M, Zhao G, et al. Inhalation delivery of dexamethasone with iSEND nanoparticles attenuates the COVID-19 cytokine storm in mice and nonhuman primates. Sci Adv. 2023;9:3277.

    Article 

    Google Scholar
     

  • Yang J, Liu MQ, Liu L, Li X, Xu M, Lin H, Li M, Yan H, Chen YQ, Shi ZL. The protective nasal boosting of a triple-RBD subunit vaccine against SARS-CoV-2 following inactivated virus vaccination. Signal Transduct Target Ther. 2023;8:151.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei H, Alu A, Yang J, He X, He C, Ren W, Chen Z, Hong W, Chen L, He X, et al. Cationic crosslinked carbon dots-adjuvanted intranasal vaccine induces protective immunity against omicron-included SARS-CoV-2 variants. Nat Commun. 2023;14:2678.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao A, Chen Y, Liang H, Cui X, Zhang A, Cui D. Developing an efficient MGCR microneedle nanovaccine patch for eliciting th 1 cellular response against the SARS-CoV-2 infection. Theranostics. 2023;13:4821–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao ZL, Xu W, Zheng SJ, Duan QJ, Liu R, Du JZ. Orchestrated cytosolic delivery of antigen and adjuvant by manganese ion-coordinated nanovaccine for enhanced cancer immunotherapy. Nano Lett. 2023;23:1904–13.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia S, Ji S, Zhao J, Lv Y, Wang J, Sun D, Ding D. A fluorinated supramolecular self-assembled peptide as nanovaccine adjuvant for enhanced cancer vaccine therapy. Small Methods. 2023;7:2201409.

    Article 
    CAS 

    Google Scholar
     

  • Guo X, Du L, Ma N, Zhang P, Wang Y, Han Y, Huang X, Zhang Q, Tan X, Lei X, Qu B. Monophosphoryl lipid A ameliorates radiation-induced lung injury by promoting the polarization of macrophages to the M1 phenotype. J Transl Med. 2022;20:597.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pifferi C, Fuentes R, Fernández-Tejada A. Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem. 2021;5:197–216.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther. 2023;8:283.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sliepen K, Schermer E, Bontjer I, Burger JA, Lévai RF, Mundsperger P, Brouwer PJM, Tolazzi M, Farsang A, Katinger D, et al. Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers. npj Vaccines. 2021;6:103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ukidve A, Cu K, Goetz M, Angsantikul P, Curreri A, Tanner EEL, Lahann J, Mitragotri S. Ionic-liquid-based safe adjuvants. Adv Mater. 2020;32:2002990.

    Article 
    CAS 

    Google Scholar
     

  • Peng S, Cao F, Xia Y, Gao XD, Dai L, Yan J, Ma G. Particulate alum via pickering emulsion for an enhanced COVID-19 vaccine adjuvant. Adv Mater. 2020;32:2004210.

    Article 
    CAS 

    Google Scholar
     

  • Phoolcharoen W, Shanmugaraj B, Khorattanakulchai N, Sunyakumthorn P, Pichyangkul S, Taepavarapruk P, Praserthsee W, Malaivijitnond S, Manopwisedjaroen S, Thitithanyanont A, et al. Preclinical evaluation of immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3 M-052-Alum adjuvant. Vaccine. 2023;41:2781–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Controlled Release. 2022;342:170–88.

    Article 
    CAS 

    Google Scholar
     

  • Wang S, Li Z, Wang X, Zhang S, Gao P, Shi Z. The role of pulmonary surfactants in the treatment of acute respiratory distress syndrome in COVID-19. Front Pharmacol. 2021;12:698905.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hidalgo A, Garcia-Mouton C, Autilio C, Carravilla P, Orellana G, Islam MN, Bhattacharya J, Bhattacharya S, Cruz A, Pérez-Gil J. Pulmonary surfactant and drug delivery: vehiculization, release and targeting of surfactant/tacrolimus formulations. J Controlled Release. 2021;329:205–22.

    Article 
    CAS 

    Google Scholar
     

  • Guo L, Miao Y, Wang Y, Zhang Y, Zhou E, Wang J, Zhao Y, Li L, Wang A, Gan Y, Zhang X. Biomimetic macrophage membrane and lipidated peptide hybrid nanovesicles for atherosclerosis therapy. Adv Funct Mater. 2022;32:2204822.

    Article 
    CAS 

    Google Scholar
     

  • Hu M, Zhang J, Kong L, Yu Y, Hu Q, Yang T, Wang Y, Tu K, Qiao Q, Qin X, Zhang Z. Immunogenic hybrid nanovesicles of liposomes and tumor-derived nanovesicles for cancer immunochemotherapy. ACS Nano. 2021;15:3123–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neupane YR, Handral HK, Alkaff SA, Chng WH, Venkatesan G, Huang C, Lee CK, Wang J-W, Sriram G, Dienzo RA, et al. Cell-derived nanovesicles from mesenchymal stem cells as extracellular vesicle-mimetics in wound healing. Acta Pharm Sin B. 2023;13:1887–902.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JR, Sim WS, Park HJ, Park BW, Joung YK. Targeted delivery of apoptotic cell-derived nanovesicles prevents cardiac remodeling and attenuates cardiac function exacerbation. Adv Funct Mater. 2023;33:2210864.

    Article 
    CAS 

    Google Scholar
     

  • Sun L, Wang D, Noh I, Fang RH, Gao W, Zhang L. Synthesis of erythrocyte nanodiscs for bacterial toxin neutralization. Angew Chem Int Ed. 2023;62:2023015.


    Google Scholar
     

  • Li Z, Wang Z, Dinh PC, Zhu D, Popowski KD, Lutz H, Hu S, Lewis MG, Cook A, Andersen H, et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat Nanotechnol. 2021;16:942–51.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo Z, Noh I, Zhu AT, Yu Y, Gao W, Fang RH, Zhang L. Cancer cell membrane nanodiscs for antitumor vaccination. Nano Lett. 2023;23:7941–9.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Su Y, Wang Z. Remote co-loading of amphipathic acid drugs in neutrophil nanovesicles infilled with cholesterol mitigates lung bacterial infection and inflammation. Biomaterials. 2023;296:122071.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW. Hybrid cell membrane-coated nanoparticles: a multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater. 2020;112:1–13.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Liang Q, Wu X, Duan S, Ge C, Ye H, Lu J, Zhu R, Chen Y, Meng F, Yin L. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv Mater. 2023;35:2210691.

    Article 
    CAS 

    Google Scholar
     

  • Krishnan N, Peng FX, Mohapatra A, Fang RH, Zhang L. Genetically engineered cellular nanoparticles for biomedical applications. Biomaterials. 2023;296:122065.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Q, Kang Y, Yao B, Dong J, Zhu Y, He Y, Ji X. Genetically engineered-cell‐membrane nanovesicles for cancer immunotherapy. Adv Sci. 2023;10:2302131.

    Article 
    CAS 

    Google Scholar
     

  • Huo J, Zhang A, Wang S, Cheng H, Fan D, Huang R, Wang Y, Wan B, Zhang G, He H. Splenic-targeting biomimetic nanovaccine for elevating protective immunity against virus infection. J Nanobiotechnol. 2022;20:514.

    Article 
    CAS 

    Google Scholar
     

  • Alameh MG, Tombacz I, Bettini E, Lederer K, Sittplangkoon C, Wilmore JR, Gaudette BT, Soliman OY, Pine M, Hicks P, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021;54:2877–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, Zhou J, Bouton CR, Rogers P, Polra K, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat Commun. 2020;11:3523.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim KS, Lee S, Na K, Bae YH. Ovalbumin and poly(i:c) encapsulated dendritic cell-targeted nanoparticles for immune activation in the small intestinal lymphatic system. Adv Healthc Mater. 2022;11:2200909.

    Article 
    CAS 

    Google Scholar
     

  • Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, Sun Z, Jiang S, Lu L, Wu MX. Pulmonary surfactant–biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367:869.

    Article 

    Google Scholar
     

  • Chen X, Shi T, Yang C, Chen F, He X, Zhang K, Hu H, Cai L, Leong KW, Shao D. Scalable biomimetic SARS-CoV–2 nanovaccines with robust protective immune responses. Signal Transduct Target Ther. 2022;7:96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elia U, Rotem S, Bar Haim E, Ramishetti S, Naidu GS, Gur D, Aftalion M, Israeli Ma, Bercovich Kinori A, Alcalay R, et al. Lipid nanoparticle RBD-hFc mRNA vaccine protects hACE2 transgenic mice against a lethal SARS-CoV-2 infection. Nano Lett. 2021;21:4774–9.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Hua L, Yang M, Liu SQ, Shen J, Li W, Long Q, Bai H, Yang X, Ren Z, et al. RBD-modified bacterial vesicles elicited potential protective immunity against SARS-CoV-2. Nano Lett. 2021;21:5920–30.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan J, Wang Q, Qi M, Chen J, Wu X, Zhang X, Li W, Zhang XE, Cui Z. An intranasal multivalent epitope-based nanoparticle vaccine confers broad protection against divergent influenza viruses. ACS Nano. 2023;17:13474–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Jiang S, Zhang P, Ren Z, Wen J. Exosomes synergized with PIONs@E6 enhance their immunity against hepatocellular carcinoma via promoting M1 macrophages polarization. Int Immunopharmacol. 2021;99:107960.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Z, Deng T, Tao M, Lin L, Sun L, Song X, Gao D, Li J, Wang Z, Wang X, et al. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization. Biomaterials. 2023;299:122141.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Popowski KD, Zhu D, de Juan Abad BL, Wang X, Liu M, Lutz H, De Naeyer N, DeMarco CT, Denny TN, et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat Biomed Eng. 2022;6:791–805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: a focus on COVID-19 vaccines. J Controlled Release. 2023;355:655–74.

    Article 
    CAS 

    Google Scholar
     

  • Brewer RC, Ramadoss NS, Lahey LJ, Jahanbani S, Robinson WH, Lanz TV. BNT162b2 vaccine induces divergent B cell responses to SARS-CoV-2 S1 and S2. Nat Immunol. 2021;23:33–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Wang B, Caserto JS, Shariati K, Cao P, Pan Y, Xu Q, Ma M. Sustained delivery of SARS-CoV-2 RBD subunit vaccine using a high affinity injectable hydrogel scaffold. Adv Healthc Mater. 2021;11:2101714.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar