Nanotechnology

Mesenchymal stem cells, as glioma exosomal immunosuppressive signal multipliers, enhance MDSCs immunosuppressive activity through the miR-21/SP1/DNMT1 positive feedback loop | Journal of Nanobiotechnology


  • van Solinge TS, Nieland L, Chiocca EA, Broekman MLD. Advances in local therapy for glioblastoma – taking the fight to the tumour. Nat Rev Neurol. 2022;18:221–36.

    Article 
    PubMed 

    Google Scholar
     

  • Tan A, Ashley D, López G, Malinzak M, Friedman H. Khasraw MJCacjfc. Management of glioblastoma: State of the art and future directions. 2020;70:299–312.

  • Brown T, Brennan M, Li M, Church E, Brandmeir N, Rakszawski K, Patel A, Rizk E, Suki D, Sawaya R, Glantz MJJo. Association of the extent of Resection with Survival in Glioblastoma: a systematic review and Meta-analysis. 2016;2:1460–9.

  • He J, Xiong X, Yang H, Li D, Liu X, Li S, Liao S, Chen S, Wen X, Yu K et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response. 2022;32:530–42.

  • Leko V, Rosenberg SJCc. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors. 2020;38:454–72.

  • Asrir A, Tardiveau C, Coudert J, Laffont R, Blanchard L, Bellard E, Veerman K, Bettini S, Lafouresse F, Vina E et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. 2022;40:318–334e319.

  • Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu Z, Karnoub AE. Mesenchymal stem/stromal cells in breast cancer development and management. Semin Cancer Biol. 2022;86:81–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, Wang YJNrN. Immunoregulatory Mech mesenchymal stem stromal cells Inflamm Dis. 2018;14:493–507.

    CAS 

    Google Scholar
     

  • Wang Y, Chen X, Cao W, Shi, YJNi. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. 2014;15:1009–16.

  • Shahar T, Rozovski U, Hess K, Hossain A, Gumin J, Gao F, Fuller G, Goodman L, Sulman E. Lang FJN-o. percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. 2017;19:660–8.

  • Qi Y, Jin C, Qiu W, Zhao R, Wang S, Li B, Zhang Z, Guo Q, Zhang S, Gao Z et al. The dual role of glioma exosomal microRNAs: glioma eliminates tumor suppressor mir-1298-5p via exosomes to promote immunosuppressive effects of MDSCs. 2022;13:426.

  • Mi Y, Guo N, Luan J, Cheng J, Hu Z, Jiang P, Jin W, Gao X. The emerging role of myeloid-derived suppressor cells in the Glioma Immune Suppressive Microenvironment. Front Immunol. 2020;11:737.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayik D, Zhou Y, Park C, Hong C, Vail D, Silver DJ, Lauko A, Roversi G, Watson DC, Lo A, et al. Myeloid-derived suppressor cell subsets drive Glioblastoma Growth in a sex-specific manner. Cancer Discov. 2020;10:1210–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegde S, Leader AM, Merad M. MDSC: markers, development, states, and unaddressed complexity. Immunity. 2021;54:875–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Montalbán I, Penski C, Schlahsa L, Stein RG, Diessner J, Wöckel A, Dietl J, Lutz MB, Mittelbronn M, Wischhusen J, Häusler SFM. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages – a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape. J Immunother Cancer. 2016;4:49.

    Article 

    Google Scholar
     

  • Zhang Y, Qu D, Sun J, Zhao L, Wang Q, Shao Q, Kong B, Zhang Y, Qu X. Human trophoblast cells induced MDSCs from peripheral blood CD14(+) myelomonocytic cells via elevated levels of CCL2. Cell Mol Immunol. 2016;13:615–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, Benninger K, Khan M, Kuppusamy P, Guenterberg K, Kondadasula SV, Chaudhury AR, La Perle KM, et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res. 2011;71:5101–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Virgilio F. Purines, purinergic receptors, and cancer. Cancer Res. 2012;72:5441–7.

    Article 
    PubMed 

    Google Scholar
     

  • Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19:355–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A. 2010;107:1547–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Haskó G. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer. 2016;2:95–109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbst RS, Majem M, Barlesi F, Carcereny E, Chu Q, Monnet I, Sanchez-Hernandez A, Dakhil S, Camidge DR, Winzer L, et al. COAST: an Open-Label, phase II, Multidrug platform study of Durvalumab alone or in Combination with Oleclumab or Monalizumab in patients with Unresectable, Stage III Non-Small-Cell Lung Cancer. J Clin Oncol. 2022;40:3383–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goswami S, Walle T, Cornish AE, Basu S, Anandhan S, Fernandez I, Vence L, Blando J, Zhao H, Yadav SS, et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nat Med. 2020;26:39–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 2022;21:207.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Li J, Zeng Y, Pu W, Mu X, Sun K, Peng Y, Shen B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci. 2022;14:40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, Zhang S, Zhao S, Xu H, Li M, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21:16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu W, Guo X, Li B, Wang J, Qi Y, Chen Z, Zhao R, Deng L, Qian M, Wang S, et al. Exosomal miR-1246 from glioma patient body fluids drives the differentiation and activation of myeloid-derived suppressor cells. Mol Ther. 2021;29:3449–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi Y, Jin C, Qiu W, Zhao R, Wang S, Li B, Zhang Z, Guo Q, Zhang S, Gao Z, et al. The dual role of glioma exosomal microRNAs: glioma eliminates tumor suppressor mir-1298-5p via exosomes to promote immunosuppressive effects of MDSCs. Cell Death Dis. 2022;13:426.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Ni Y, Xu H, Xiang Q, Zhao Y, Zhan J, He J, Li S. Liu YJSt, therapy t. roles and mechanisms of exosomal non-coding RNAs. Hum health Dis. 2021;6:383.

    CAS 

    Google Scholar
     

  • Witwer KW, Soekmadji C, Hill AF, Wauben MH, Buzás EI, Di Vizio D, Falcon-Perez JM, Gardiner C, Hochberg F, Kurochkin IV, et al. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles. 2017;6:1396823.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107:823–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, Zhu Z, Li D, Wang T, Liu K. The role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front Cell Dev Biol. 2020;8:616161.

    Article 
    PubMed 

    Google Scholar
     

  • Guo X, Qiu W, Liu Q, Qian M, Wang S, Zhang Z, Gao X, Chen Z, Xue H, Li G. Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten pathways. Oncogene. 2018;37:4239–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li B, Chen X, Qiu W, Zhao R, Duan J, Zhang S, Pan Z, Zhao S, Guo Q, Qi Y, et al. Synchronous disintegration of Ferroptosis Defense Axis via Engineered Exosome-Conjugated magnetic nanoparticles for Glioblastoma Therapy. Adv Sci (Weinh). 2022;9:e2105451.

    Article 
    PubMed 

    Google Scholar
     

  • Liu L, Li Y, Peng H, Liu R, Ji W, Shi Z, Shen J, Ma G, Zhang X. Targeted exosome coating gene-chem nanocomplex as “nanoscavenger” for clearing alpha-synuclein and immune activation of Parkinson’s disease. Sci Adv 2020;6.

  • Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, Zhang C, Yue D, Qin G, Zhang T, et al. Metformin-Induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian Cancer. Cancer Res. 2018;78:1779–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quezada C, Torres Á, Niechi I, Uribe D, Contreras-Duarte S, Toledo F, San Martín R, Gutiérrez J, Sobrevia L. Role of extracellular vesicles in glioma progression. Mol Aspects Med. 2018;60:38–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Zhang C, Xiang P, Shen J, Sun W, Yu H. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J Extracell Vesicles. 2020;9:1722385.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirota SA, Fines K, Ng J, Traboulsi D, Lee J, Ihara E, Li Y, Willmore WG, Chung D, Scully MM, et al. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology. 2010;139:259–269e253.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng S, Quintin J, Cramer R, Shepardson K, Saeed S, Kumar V, Giamarellos-Bourboulis E, Martens J, Rao N, Aghajanirefah A et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. 2014;345:1250684.

  • Shafee N, Kaluz S, Ru N, Stanbridge EJCl. PI3K/Akt activity has variable cell-specific effects on expression of HIF target genes, CA9 and VEGF, in human cancer cell lines. 2009;282:109–15.

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haraszti RA, Didiot MC, Sapp E, Leszyk J, Shaffer SA, Rockwell HE, Gao F, Narain NR, DiFiglia M, Kiebish MA, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5:32570.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology. 2006;66:102–9.

    Article 

    Google Scholar
     

  • Zhou W, Xu Y, Zhang J, Zhang P, Yao Z, Yan Z, Wang H, Chu J, Yao S, Zhao S, et al. MiRNA-363-3p/DUSP10/JNK axis mediates chemoresistance by enhancing DNA damage repair in diffuse large B-cell lymphoma. Leukemia. 2022;36:1861–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Q, Wang HY, Liu X, Bhutani G, Kantekure K, Wasik M. IL-2R common gamma-chain is epigenetically silenced by nucleophosphin-anaplastic lymphoma kinase (NPM-ALK) and acts as a tumor suppressor by targeting NPM-ALK. Proc Natl Acad Sci U S A. 2011;108:11977–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kishikawa S, Murata T, Kimura H, Shiota K, Yokoyama KK. Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. Eur J Biochem. 2002;269:2961–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin RK, Wu CY, Chang JW, Juan LJ, Hsu HS, Chen CY, Lu YY, Tang YA, Yang YC, Yang PC, Wang YC. Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer. Cancer Res. 2010;70:5807–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alptekin A, Parvin M, Chowdhury H, Rashid M. Arbab AJIr. Engineered exosomes for studies in tumor immunology. 2022;312:76–102.

  • Rehman FU, Liu Y, Zheng M, Shi B. Exosomes based strategies for brain drug delivery. Biomaterials. 2023;293:121949.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allard B, Pommey S, Smyth MJ, Stagg J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res. 2013;19:5626–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H, Matsuzaki Y. Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc. 2012;7:2103–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T, et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009;206:2483–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, Yuan ZR, Roberts AI, Zhang L, Zheng B, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell. 2012;11:812–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 2020;20:12–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takacs GP, Flores-Toro JA, Harrison JK. Modulation of the chemokine/chemokine receptor axis as a novel approach for glioma therapy. Pharmacol Ther. 2021;222:107790.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowak B, Rogujski P, Janowski M, Lukomska B, Andrzejewska A. Mesenchymal stem cells in glioblastoma therapy and progression: how one cell does it all. Biochim Biophys Acta Rev Cancer. 2021;1876:188582.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Figueroa J, Phillips LM, Shahar T, Hossain A, Gumin J, Kim H, Bean AJ, Calin GA, Fueyo J, Walters ET, et al. Exosomes from Glioma-Associated Mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587. Cancer Res. 2017;77:5808–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takayama Y, Kusamori K, Nishikawa M. Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics. Expert Opin Drug Deliv. 2021;18:1627–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacioni S, D’Alessandris QG, Giannetti S, Morgante L, De Pascalis I, Cocce V, Bonomi A, Pascucci L, Alessandri G, Pessina A, et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Res Ther. 2015;6:194.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allahverdi A, Arefian E, Soleimani M, Ai J, Nahanmoghaddam N, Yousefi-Ahmadipour A, Ebrahimi-Barough S. MicroRNA-4731-5p delivered by AD-mesenchymal stem cells induces cell cycle arrest and apoptosis in glioblastoma. J Cell Physiol. 2020;235:8167–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, Bobbitt K, Rempel SA, Hasselbach L, Mikkelsen T, et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget. 2013;4:346–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohme M, Maire CL, Geumann U, Schliffke S, Duhrsen L, Fita K, Akyuz N, Binder M, Westphal M, Guenther C, et al. Local Intracerebral Immunomodulation using interleukin-expressing mesenchymal stem cells in Glioblastoma. Clin Cancer Res. 2020;26:2626–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chastkofsky MI, Pituch KC, Katagi H, Zannikou M, Ilut L, Xiao T, Han Y, Sonabend AM, Curiel DT, Bonner ER, et al. Mesenchymal stem cells successfully deliver oncolytic virotherapy to diffuse intrinsic pontine glioma. Clin Cancer Res. 2021;27:1766–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, Priebe W, Villarreal D, Kang SG, Joyce C, et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells. 2015;33:2400–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Yi DY, Xue BZ, Wen WW, Lu YP, Abdelmaksou A, Sun MX, Yuan DT, Zhao HY, Xiong NX, et al. CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with different roles in tumour progression. Cell Death Dis. 2018;9:1101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghasempour E, Hesami S, Movahed E, Keshel SH, Doroudian M. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors. Stem Cell Res Ther. 2022;13:527.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, Zhang C, Tang W, Liu Z. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci. 2021;9:1088–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mensa E, Guescini M, Giuliani A, Bacalini MG, Ramini D, Corleone G, Ferracin M, Fulgenzi G, Graciotti L, Prattichizzo F, et al. Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells. J Extracell Vesicles. 2020;9:1725285.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung BK, Song H, Shin H, Chai JY. Exosomal miRNA-21 from Toxoplasma gondii-infected microglial cells induces the growth of U87 glioma cells by inhibiting tumor suppressor genes. Sci Rep. 2022;12:16450.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan F, Pan Q, Yu H, Yue X. Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/β-catenin signaling in glioblastoma. J Neurochem. 2015;134:811–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griveau A, Bejaud J, Anthiya S, Avril S, Autret D, Garcion E. Silencing of miR-21 by locked nucleic acid-lipid nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death. Int J Pharm. 2013;454:765–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anthiya S, Griveau A, Loussouarn C, Baril P, Garnett M, Issartel JP, Garcion E. MicroRNA-Based drugs for brain tumors. Trends Cancer. 2018;4:222–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armstrong JP, Holme MN, Stevens MM. Re-engineering extracellular vesicles as smart Nanoscale therapeutics. ACS Nano. 2017;11:69–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Xia J, Miao Y, Wang X, Huang X, Dai J. Recent progress of dendritic cell-derived exosomes (dex) as an anti-cancer nanovaccine. Biomed Pharmacother. 2022;152:113250.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3:10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5:e1071008.

    Article 
    PubMed 

    Google Scholar
     

  • Pitt JM, Andre F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 2016;126:1224–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu X, Erb U, Buchler MW, Zoller M. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. Int J Cancer. 2015;136:E74–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du L, Lee JH, Jiang H, Wang C, Wang S, Zheng Z, Shao F, Xu D, Xia Y, Li J et al. beta-catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med 2020;217.

  • Reardon DA, Omuro A, Brandes AA, Rieger J, Wick A, Sepulveda J, Phuphanich S, de Souza P, Ahluwalia MS, Lim M, et al. OS10.3 Randomized phase 3 study evaluating the efficacy and safety of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neurooncology. 2017;19:iii21–1.


    Google Scholar
     

  • Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bahr O, et al. Effect of Nivolumab vs Bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 Randomized Clinical Trial. JAMA Oncol. 2020;6:1003–10.

    Article 
    PubMed 

    Google Scholar
     

  • Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Charo IF, Singh R, Schall TJ, Datta M, Jain RK, et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci U S A. 2020;117:1129–38.

    Article 
    CAS 
    PubMed 

    Google Scholar