Nanotechnology

Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting


  • Sadi, T., Radevici, I. & Oksanen, J. Thermophotonic cooling with light-emitting diodes. Nat. Photon. 14, 205–214 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tauc, J. The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p–n junction. Cech. Fiz. Z. 7, 275–276 (1957).


    Google Scholar
     

  • Wurfel, P. The chemical-potential of radiation. J. Phys. C 15, 3967–3985 (1982).

    Article 

    Google Scholar
     

  • Su, Q. & Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 13, 369 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lin, X. et al. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots. Nano Res. 15, 9402–9409 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, N. et al. Ultra-low-power sub-photon-voltage high-efficiency light-emitting diodes. Nat. Photon. 13, 588–592 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pal, B. N. et al. ‘Giant’ CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano Lett. 12, 331–336 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Park, Y. S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qin, H. Y. et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 136, 179–187 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lim, J., Park, Y. S., Wu, K. F., Yun, H. J. & Klimov, V. I. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett. 18, 6645–6653 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, T. et al. Bright and stable quantum dot light-emitting diodes. Adv. Mater. 34, 202106276 (2021).


    Google Scholar
     

  • Qian, L., Zheng, Y., Xue, J. & Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photon. 5, 543–548 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998).

    Article 

    Google Scholar
     

  • Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mashford, B. S. et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7, 407–412 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Cao, W. et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun. 9, 2608 (2018).

    Article 

    Google Scholar
     

  • Lin, J. et al. High-performance quantum-dot light-emitting diodes using NiOX hole-injection layers with a high and stable work function. Adv. Funct. Mater. 30, 201907265 (2020).

    Article 

    Google Scholar
     

  • Liu, D. et al. Highly stable red quantum dot light-emitting diodes with long T95 operation lifetimes. J. Phys. Chem. Lett. 11, 3111–3115 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Pu, C. et al. Electrochemically-stable ligands bridge the photoluminescence–electroluminescence gap of quantum dots. Nat. Commun. 11, 937 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 10, 765 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sun, Y. et al. Investigation on thermally induced efficiency roll-off: towards efficient and ultra-bright quantum-dot light-emitting diodes. ACS Nano 13, 11433–11442 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Scholz, S., Kondakov, D., Lüssem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449–8503 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Benisty, H., Stanley, R. & Mayer, M. Method of source terms for dipole emission modification in modes of arbitrary planar structures. J. Opt. Soc. Am. A 15, 1192–1201 (1998).

    Article 

    Google Scholar
     

  • Cho, C. & Greenham, N. C. Computational study of dipole radiation in re‐absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2020).

    Article 

    Google Scholar