Nanotechnology

Multilayer spintronic neural networks with radiofrequency connections


  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorphic Comput. Eng. 2, 022501 (2022).

    Article 

    Google Scholar
     

  • Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

  • Worledge, D. C. Spin-Transfer-Torque MRAM: the next revolution in memory. In 2022 IEEE International Memory Workshop (IMW) 1–4 (IEEE, 2022).

  • Safranski, C., Sun, J. Z. & Kent, A. D. A perspective on electrical generation of spin current for magnetic random access memories. Appl. Phys. Lett. 120, 160502 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kurenkov, A. et al. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching. Adv. Mater. 31, 1900636 (2019).

    Article 

    Google Scholar
     

  • Chen, R. et al. Nanoscale room-temperature multilayer skyrmionic synapse for deep spiking neural networks. Phys. Rev. Appl. 14, 014096 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article 

    Google Scholar
     

  • Mansueto, M. et al. Spintronic memristors for neuromorphic circuits based on the angular variation of tunnel magnetoresistance. Nanoscale 13, 11488–11496 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Spin-torque memristors based on perpendicular magnetic tunnel junctions for neuromorphic computing. Adv. Sci. 8, 2004645 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J.-W. et al. A quantum material spintronic resonator. Sci. Rep. 11, 15082 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kiraly, B., Knol, E. J., van Weerdenburg, W. M. J., Kappen, H. J. & Khajetoorians, A. A. An atomic Boltzmann machine capable of self-adaption. Nat. Nanotechnol. 16, 414–420 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Leroux, N. et al. Hardware realization of the multiply and accumulate operation on radio-frequency signals with magnetic tunnel junctions. Neuromorphic Comput. Eng. https://doi.org/10.1088/2634-4386/abfca6 (2021).

  • Monalisha, P., Kumar, A. P. S., Wang, X. R. & Piramanayagam, S. N. Emulation of synaptic plasticity on a cobalt-based synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 14, 11864–11872 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing. Phys. Rev. Appl. 9, 014034 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Borders, W. A. et al. Integer factorization using stochastic magnetic tunnel junctions. Nature 573, 390–393 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tsunegi, S. et al. Physical reservoir computing based on spin torque oscillator with forced synchronization. Appl. Phys. Lett. 114, 164101 (2019).

    Article 

    Google Scholar
     

  • Koo, M. et al. Distance computation based on coupled spin-torque oscillators: application to image processing. Phys. Rev. Appl. 14, 034001 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ababei, R. V. et al. Neuromorphic computation with a single magnetic domain wall. Sci. Rep. 11, 15587 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Watt, S., Kostylev, M., Ustinov, A. B. & Kalinikos, B. A. Implementing a magnonic reservoir computer model based on time-delay multiplexing. Phys. Rev. Appl. 15, 064060 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mazza, L. et al. Computing with injection-locked spintronic diodes. Phys. Rev. Appl. 17, 014045 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zahedinejad, M. et al. Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing. Nat. Mater. 21, 81–87 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Romera, M. et al. Binding events through the mutual synchronization of spintronic nano-neurons. Nat. Commun. 13, 883 (2022).

    Article 

    Google Scholar
     

  • Finocchio, G. et al. Perspectives on spintronic diodes. Appl. Phys. Lett. 118, 160502 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Siafarikas, D. & Volakis, J. L. Toward direct RF sampling: implications for digital communications. IEEE Microw. Mag. 21, 43–52 (2020).

    Article 

    Google Scholar
     

  • Farley, B., McGrath, J. & Erdmann, C. An all-programmable 16-nm RFSoC for digital-RF communications. IEEE Micro 38, 61–71 (2018).

    Article 

    Google Scholar
     

  • Leroux, N. et al. Radio-frequency multiply-and-accumulate operations with spintronic synapses. Phys. Rev. Appl. 15, 034067 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, Y. H., Khan, S., Huh, J. & Ye, J. C. Efficient B-mode ultrasound image reconstruction from sub-sampled RF data using deep learning. IEEE Trans. Med. Imaging 38, 325–336 (2019).

    Article 

    Google Scholar
     

  • Dai, M., Li, S., Wang, Y., Zhang, Q. & Yu, J. Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging. Biomed. Eng. Online 18, 95 (2019).

    Article 

    Google Scholar
     

  • Besler, E., Wang, Y. C. & Sahakian, A. V. Real-time radiofrequency ablation lesion depth estimation using multi-frequency impedance with a deep neural network and tree-based ensembles. IEEE Trans. Biomed. Eng. 67, 1890–1899 (2020).

    Article 

    Google Scholar
     

  • Merchant, K., Revay, S., Stantchev, G. & Nousain, B. Deep learning for RF device fingerprinting in cognitive communication networks. IEEE J. Sel. Top. Signal Process. 12, 160–167 (2018).

    Article 

    Google Scholar
     

  • Lien, J. et al. Soli: ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 35, 142 (2016).

  • Basak, S., Rajendran, S., Pollin, S. & Scheers, B. Drone classification from RF fingerprints using deep residual nets. In 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS) 548–555 (IEEE, 2021).

  • USRP X310 High-Performance Software Defined Radio https://www.ettus.com/all-products/x310-kit/ (Ettus Research).

  • Compare 10 Series Graphics Cards, GeForce https://www.nvidia.com/en-in/geforce/products/10series/compare/ (NVIDIA).

  • Chao, X., Jamali, M. & Wang, J.-P. Scaling effect of spin-torque nano-oscillators. AIP Adv. 7, 056624 (2017).

    Article 

    Google Scholar
     

  • Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

  • Dussaux, A. et al. Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer. Appl. Phys. Lett. 105, 022404 (2014).

    Article 

    Google Scholar
     

  • Tsunegi, S. et al. High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Appl. Phys. Express 7, 063009 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Choi, J.-G. et al. Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators. Nat. Commun. 13, 3783 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Martins, L. et al. Non-volatile artificial synapse based on a vortex nano-oscillator. Sci. Rep. 11, 16094 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, S. et al. Reduced spin torque nano-oscillator linewidth using He+ irradiation. Appl. Phys. Lett. 116, 072403 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Divinskiy, B., Urazhdin, S., Demokritov, S. O. & Demidov, V. E. Controlled nonlinear magnetic damping in spin-Hall nano-devices. Nat. Commun. 10, 5211 (2019).

    Article 

    Google Scholar
     

  • Sethi, P. et al. Compensation of anisotropy in spin-Hall devices for neuromorphic applications. Phys. Rev. Appl. 19.6, 064018 (2023).

    Article 

    Google Scholar
     

  • Jenkins, A. S., Alvarez, L. S. E., Freitas, P. P. & Ferreira, R. Digital and analogue modulation and demodulation scheme using vortex-based spin torque nano-oscillators. Sci. Rep. 10, 11181 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Craven, M. P., Curtis, K. M. & Hayes-Gill, B. R. Frequency division multiplexing in analogue neural network. Electron. Lett. 27, 918–920 (1991).

    Article 

    Google Scholar
     

  • Leroux, N. et al. Convolutional neural networks with radio-frequency spintronic nano-devices. Neuromorphic Comput. Eng. 2, 034002 (2022).

    Article 

    Google Scholar
     

  • Noh, S. et al. Spin dynamics in ferromagnetic resonance for nano-sized magnetic dot arrays: metrology and insight into magnetization dynamics. IEEE Trans. Magn. 47, 2387–2390 (2011).

    Article 

    Google Scholar
     

  • Litvinenko, A. et al. Ultrafast GHz-range swept-tuned spectrum analyzer with 20 ns temporal resolution based on a spin-torque nano-oscillator with a uniformly magnetized ‘free’ layer. Nano Lett. 22, 1874–1879 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kurokawa, Y. et al. Ultra-wide-band millimeter-wave generator using spin torque oscillator with strong interlayer exchange couplings. Sci. Rep. 12, 10849 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bonetti, S., Muduli, P., Mancoff, F. & Åkerman, J. Spin torque oscillator frequency versus magnetic field angle: the prospect of operation beyond 65 GHz. Appl. Phys. Lett. 94, 102507 (2009).

    Article 

    Google Scholar
     

  • Khymyn, R. et al. Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator. Sci. Rep. 8, 15727 (2018).

    Article 

    Google Scholar
     

  • Chakravarty, A. et al. Supervised learning of an opto-magnetic neural network with ultrashort laser pulses. Appl. Phys. Lett. 114, 192407 (2019).

    Article 

    Google Scholar
     

  • Scellier, B. & Bengio, Y. Equilibrium propagation: bridging the gap between energy-based models and backpropagation. Front. Comput. Neurosci. 11, 24 (2017).

    Article 

    Google Scholar
     

  • Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: a next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2623–2631 (Association for Computing Machinery, 2019).