Nanotechnology

Nanotechnology-based ocular drug delivery systems: recent advances and future prospects | Journal of Nanobiotechnology


  • Ma Y, Bao J, Zhang Y, et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell. 2019;177(2):243-255.e15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol. 2020;16(10):885–906.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khiev D, Mohamed ZA, Vichare R, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials (Basel). 2021;11(1):173.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kels BD, Grzybowski A, Grant-Kels JM. Human ocular anatomy. Clin Dermatol. 2015;33(2):140–6.

    Article 
    PubMed 

    Google Scholar
     

  • Nayak K, Misra M. Triamcinolone acetonide-loaded PEGylated microemulsion for the posterior segment of eye. ACS Omega. 2020;5(14):7928–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL. Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci. 2018;19(9):2830.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCluskey P, Powell RJ. The eye in systemic inflammatory diseases. Lancet. 2004;364(9451):2125–33.

    Article 
    PubMed 

    Google Scholar
     

  • Vision impairment and blindness. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment Accessed 19 July 2022.

  • Brown L, Leck AK, Gichangi M, Burton MJ, Denning DW. The global incidence and diagnosis of fungal keratitis. Lancet Infect Dis. 2021;21(3):e49–57.

    Article 
    PubMed 

    Google Scholar
     

  • Wielders LHP, Schouten JSAG, Winkens B, et al. European multicenter trial of the prevention of cystoid macular edema after cataract surgery in nondiabetics: ESCRS PREMED study report 1. J Cataract Refract Surg. 2018;44(4):429–39.

    Article 
    PubMed 

    Google Scholar
     

  • Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493–510.

    Article 
    PubMed 

    Google Scholar
     

  • Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.

    Article 
    PubMed 

    Google Scholar
     

  • Cabrera FJ, Wang DC, Reddy K, Acharya G, Shin CS. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today. 2019;24(8):1679–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumelle C, Gholizadeh S, Annabi N, Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J Control Release. 2020;321:1–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):66.

    Article 
    PubMed 

    Google Scholar
     

  • Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: past, present and future. Adv Drug Deliv Rev. 2018;126:113–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm. 2021;606:120873.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gholizadeh S, Wang Z, Chen X, Dana R, Annabi N. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov Today. 2021;26(6):1437–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akhter MH, Ahmad I, Alshahrani MY, et al. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels. 2022;8(2):82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10(46):27835–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onugwu AL, Nwagwu CS, Onugwu OS, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release. 2023;354:465–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang-Mieler JJ, Rudeen KM, Liu W, Mieler WF. Advances in ocular drug delivery systems. Eye (Lond). 2020;34(8):1371–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci. 2021;22(22):12368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta A, Kafetzis KN, Tagalakis AD, Yu-Wai-Man C. RNA therapeutics in ophthalmology—translation to clinical trials. Exp Eye Res. 2021;205:108482.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS. In vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv Transl Res. 2022;12(6):1355–75.

    Article 
    PubMed 

    Google Scholar
     

  • Kumaran K, Karthika K, Padmapreetha J. Comparative review on conventional and advanced ocular drug delivery formulations. Int J Pharm Pharm Sci. 2010;2(4):1–5.


    Google Scholar
     

  • Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bravo-Osuna I, Andrés-Guerrero V, Arranz-Romera A, Esteban-Pérez S, Molina-Martínez IT, Herrero-Vanrell R. Microspheres as intraocular therapeutic tools in chronic diseases of the optic nerve and retina. Adv Drug Deliv Rev. 2018;126:127–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang H, Yang XR, Li HL, Lu HS, Oswald J, Liu YM, et al. iRGD decorated liposomes: a novel actively penetrating topical ocular drug delivery strategy. Nano Res. 2020;13(11):3105–9.

    Article 
    CAS 

    Google Scholar
     

  • Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–315.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res. 2020;197:108115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imperiale JC, Acosta GB, Sosnik A. Polymer-based carriers for ophthalmic drug delivery. J Control Release. 2018;285:106–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wels M, Roels D, Raemdonck K, De Smedt SC, Sauvage F. Challenges and strategies for the delivery of biologics to the cornea. J Control Release. 2021;333:560–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durairaj C. Ocular pharmacokinetics. Handb Exp Pharmacol. 2017;242:31–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release. 2014;190:172–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development. Prog Mol Biol Transl Sci. 2015;134:7–23.

    Article 
    PubMed 

    Google Scholar
     

  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos. 2008;36(7):1300–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kölln C, Reichl S. mRNA expression of metabolic enzymes in human cornea, corneal cell lines, and hemicornea constructs. J Ocul Pharmacol Ther. 2012;28(3):271–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karla PK, Earla R, Boddu SH, Johnston TP, Pal D, Mitra A. Molecular expression and functional evidence of a drug efflux pump (BCRP) in human corneal epithelial cells. Curr Eye Res. 2009;34(1):1–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed S, Amin MM, El-Korany SM, Sayed S. Corneal targeted fenticonazole nitrate-loaded novasomes for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. Drug Deliv. 2022;29(1):2428–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loftsson T, Stefánsson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm. 2017;531(2):413–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev. 2018;126:96–112.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5(5):567–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bock F, Maruyama K, Regenfuss B, et al. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res. 2013;34:89–124.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shivhare R, Pathak A, Shrivastava N, Singh C, Tiwari G, Goyal R. An update review on novel advancedocular drug delivery system. World J Pharm Pharm Sci. 2012;1:545–68.

    CAS 

    Google Scholar
     

  • Watsky MA, Jablonski MM, Edelhauser HF. Comparison of conjunctival and corneal surface areas in rabbit and human. Curr Eye Res. 1988;7(5):483–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramsay E, Ruponen M, Picardat T, et al. Impact of chemical structure on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for construction of in silico model. J Pharm Sci. 2017;106(9):2463–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed I, Gokhale RD, Shah MV, Patton TF. Physicochemical determinants of drug diffusion across the conjunctiva, sclera, and cornea. J Pharm Sci. 1987;76(8):583–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res. 2006;82(2):185–200.

    Article 
    PubMed 

    Google Scholar
     

  • Sun S, Li J, Li X, et al. Episcleral drug film for better-targeted ocular drug delivery and controlled release using multilayered poly-ε-caprolactone (PCL). Acta Biomater. 2016;37:143–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mofidfar M, Abdi B, Ahadian S, et al. Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int J Pharm. 2021;607:120924.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coca-Prados M. The blood-aqueous barrier in health and disease. J Glaucoma. 2014;23(8 Suppl 1):S36–8.

    Article 
    PubMed 

    Google Scholar
     

  • Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic drug delivery systems for antibiotherapy-a review. Pharmaceutics. 2018;10(1):10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: concept in formulations and characterization techniques for ocular drug delivery. J Control Release. 2020;328:895–916.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tisi A, Feligioni M, Passacantando M, Ciancaglini M, Maccarone R. The impact of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration. Cells. 2021;10(1):64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz-Coránguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: cellular basis and development. Vision Res. 2017;139:123–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther. 2003;3(1):45–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bochot A, Couvreur P, Fattal E. Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Prog Retin Eye Res. 2000;19(2):131–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge Y, Zhang A, Sun R, et al. Penetratin-modified lutein nanoemulsion in-situ gel for the treatment of age-related macular degeneration. Expert Opin Drug Deliv. 2020;17(4):603–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90.

    Article 
    PubMed 

    Google Scholar
     

  • Gagnon MM, Boisjoly HM, Brunette I, Charest M, Amyot M. Corneal endothelial cell density in glaucoma. Cornea. 1997;16(3):314–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Zhang Z, Ye L, et al. Acute ocular hypertension disrupts barrier integrity and pump function in rat corneal endothelial cells. Sci Rep. 2017;7(1):6951.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renner M, Stute G, Alzureiqi M, et al. Optic nerve degeneration after retinal ischemia/reperfusion in a rodent model. Front Cell Neurosci. 2017;11:254.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardigos J, Ferreira Q, Crisóstomo S, et al. Nanotechnology-ocular devices for glaucoma treatment: a literature review. Curr Eye Res. 2019;44(2):111–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subrizi A, Del Amo EM, Korzhikov-Vlakh V, Tennikova T, Ruponen M, Urtti A. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today. 2019;24(8):1446–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quigley HA. 21st century glaucoma care. Eye (Lond). 2019;33(2):254–60.

    Article 
    PubMed 

    Google Scholar
     

  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16.

    Article 
    PubMed 

    Google Scholar
     

  • Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration. Med Clin North Am. 2021;105(3):473–91.

    Article 
    PubMed 

    Google Scholar
     

  • Gopinath B, Wong TY. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.

    Article 
    PubMed 

    Google Scholar
     

  • Bakri SJ, Thorne JE, Ho AC, et al. Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: a report by the American academy of ophthalmology. Ophthalmology. 2019;126(1):55–63.

    Article 
    PubMed 

    Google Scholar
     

  • Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.

    Article 
    PubMed 

    Google Scholar
     

  • Tan TE, Wong TY. Diabetic retinopathy: Looking forward to 2030. Front Endocrinol (Lausanne). 2023;13:1077669.

    Article 
    PubMed 

    Google Scholar
     

  • Ajlan RS, Silva PS, Sun JK. Vascular endothelial growth factor and diabetic retinal disease. Semin Ophthalmol. 2016;31(1–2):40–8.

    Article 
    PubMed 

    Google Scholar
     

  • Madjedi K, Pereira A, Ballios BG, et al. Switching between anti-VEGF agents in the management of refractory diabetic macular edema: a systematic review. Surv Ophthalmol. 2022;67(5):1364–72.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Wu N. Progress of nanotechnology in diabetic retinopathy treatment. Int J Nanomedicine. 2021;16:1391–403.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology. 2017;124(11S):S4–13.

    Article 
    PubMed 

    Google Scholar
     

  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–83.

    Article 
    PubMed 

    Google Scholar
     

  • Roda M, Corazza I, Bacchi Reggiani ML, et al. dry eye disease and tear cytokine levels-a meta-analysis. Int J Mol Sci. 2020;21(9):3111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asiedu K, Dzasimatu SK, Kyei S. Impact of dry eye on psychosomatic symptoms and quality of life in a healthy youthful clinical sample. Eye Contact Lens. 2018;44(Suppl 2):S404–9.

    Article 
    PubMed 

    Google Scholar
     

  • Na KS, Han K, Park YG, Na C, Joo CK. Depression, stress, quality of life, and dry eye disease in Korean women: a population-based study. Cornea. 2015;34(7):733–8.

    Article 
    PubMed 

    Google Scholar
     

  • Perez VL, Stern ME, Pflugfelder SC. Inflammatory basis for dry eye disease flares. Exp Eye Res. 2020;201:108294.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575–628.

    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Zhou MB, Zhang H. The emerging role of topical ocular drugs to target the posterior eye. Ophthalmol Ther. 2021;10(3):465–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Lockwood A. Topical ocular drug delivery systems: Innovations for an unmet need. Exp Eye Res. 2022;218:109006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen J, Lu GW, Hughes P. Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharm Res. 2018;35(11):217.

    Article 
    PubMed 

    Google Scholar
     

  • Maulvi FA, Shetty KH, Desai DT, Shah DO, Willcox MDP. Recent advances in ophthalmic preparations: ocular barriers, dosage forms and routes of administration. Int J Pharm. 2021;608:121105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gause S, Hsu KH, Shafor C, Dixon P, Powell KC, Chauhan A. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Adv Colloid Interface Sci. 2016;233:139–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci. 2021;288:102342.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien Laramy MN, Nagapudi K. Long-acting ocular drug delivery technologies with clinical precedent. Expert Opin Drug Deliv. 2022;19(10):1285–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1(1):99–114.

    Article 
    PubMed 

    Google Scholar
     

  • Le NT, Kroeger ZA, Lin WV, Khanani AM, Weng CY. Novel treatments for diabetic macular edema and proliferative diabetic retinopathy. Curr Diab Rep. 2021;21(10):43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barocas VH, Balachandran RK. Sustained transscleral drug delivery. Expert Opin Drug Deliv. 2008;5(1):1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang B, Jung JH, Prausnitz MR. The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:58–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother. 2018;107:1564–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebmann JM, Barton K, Weinreb RN, et al. Evolving guidelines for intracameral injection. J Glaucoma. 2020;29(Suppl 1):S1–7.

    Article 
    PubMed 

    Google Scholar
     

  • Gaballa SA, Kompella UB, Elgarhy O, et al. Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv Transl Res. 2021;11(3):866–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lane SS, Osher RH, Masket S, Belani S. Evaluation of the safety of prophylactic intracameral moxifloxacin in cataract surgery. J Cataract Refract Surg. 2008;34(9):1451–9.

    Article 
    PubMed 

    Google Scholar
     

  • Braga-Mele R, Chang DF, Henderson BA, et al. Intracameral antibiotics: safety, efficacy, and preparation. J Cataract Refract Surg. 2014;40(12):2134–42.

    Article 
    PubMed 

    Google Scholar
     

  • Labetoulle M, Findl O, Malecaze F, et al. Evaluation of the efficacy and safety of a standardised intracameral combination of mydriatics and anaesthetics for cataract surgery. Br J Ophthalmol. 2016;100(7):976–85.

    Article 
    PubMed 

    Google Scholar
     

  • Behndig A, Cochener B, Güell JL, et al. Endophthalmitis prophylaxis in cataract surgery: overview of current practice patterns in 9 European countries. J Cataract Refract Surg. 2013;39(9):1421–31.

    Article 
    PubMed 

    Google Scholar
     

  • Grzybowski A, Brona P, Zeman L, Stewart MW. Commonly used intracameral antibiotics for endophthalmitis prophylaxis: a literature review. Surv Ophthalmol. 2021;66(1):98–108.

    Article 
    PubMed 

    Google Scholar
     

  • Keating GM. Intracameral cefuroxime. Drugs. 2013;73(2):179–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho JW, Afshari NA. Advances in cataract surgery: preserving the corneal endothelium. Curr Opin Ophthalmol. 2015;26(1):22–7.

    Article 
    PubMed 

    Google Scholar
     

  • Vazirani J, Basu S. Role of topical, subconjunctival, intracameral, and irrigative antibiotics in cataract surgery. Curr Opin Ophthalmol. 2013;24(1):60–5.

    Article 
    PubMed 

    Google Scholar
     

  • Del Amo EM, Rimpelä AK, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–85.

    Article 
    PubMed 

    Google Scholar
     

  • Jonas JB, Spandau UH, Schlichtenbrede F. Short-term complications of intravitreal injections of triamcinolone and bevacizumab. Eye (Lond). 2008;22(4):590–1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release. 2020;326:419–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. Adv Sci (Weinh). 2022;9(15):e2003699.

    Article 
    PubMed 

    Google Scholar
     

  • Gross A, Cestari DM. Optic neuropathy following retrobulbar injection: a review. Semin Ophthalmol. 2014;29(5–6):434–9.

    Article 
    PubMed 

    Google Scholar
     

  • Alhassan MB, Kyari F, Ejere HO. 2015 Peribulbar versus retrobulbar anaesthesia for cataract surgery. Cochrane Database Syst Rev. 2015;7:CD004083.


    Google Scholar
     

  • Hayashi K, Hayashi H. Intravitreal versus retrobulbar injections of triamcinolone for macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2005;139(6):972–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safi M, Ang MJ, Patel P, Silkiss RZ. Rhino-orbital-cerebral mucormycosis (ROCM) and associated cerebritis treated with adjuvant retrobulbar amphotericin B. Am J Ophthalmol Case Rep. 2020;19:100771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosgrove R, Rossow T, Cosgrove M, Siegel M. Suspected systemic uptake of chlorpromazine after retrobulbar injection. Am J Ophthalmol Case Rep. 2020;19:100801.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urtti A, Salminen L. Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol. 1993;37(6):435–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duncan TE. Side effects of topical ocular timolol. Am J Ophthalmol. 1983;95(4):562–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson JA. Systemic absorption of topical ocularly applied epinephrine and dipivefrin. Arch Ophthalmol. 1980;98(2):350–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inoue K. Managing adverse effects of glaucoma medications. Clin Ophthalmol. 2014;8:903–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4(4):371–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han H, Li S, Xu M, et al. Polymer- and lipid-based nanocarriers for ocular drug delivery: current status and future perspectives. Adv Drug Deliv Rev. 2023;196:114770.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(4):e1548.

    Article 
    PubMed 

    Google Scholar
     

  • Grimaudo MA, Pescina S, Padula C, et al. Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv. 2019;16(4):397–413.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(5):422–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Q, Rijcken CJ, van Gaal E, et al. Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications. J Control Release. 2016;244(Pt B):314–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourzac K. Nanotechnology: carrying drugs. Nature. 2012;491(7425):S58–60.

    Article 
    PubMed 

    Google Scholar
     

  • Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond). 2010;5(3):485–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2–3):137–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rangel-Yagui CO, Pessoa A Jr, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci. 2005;8(2):147–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Jiang L, Shen Q, Shen J, Han Y, Zhang H. Investigation on the self-assembled behaviors of C18 unsaturated fatty acids in arginine aqueous solution. RSC Adv. 2017;7(66):41561–72.

    Article 
    CAS 

    Google Scholar
     

  • Fameau AL, Arnould A, Lehmann M, von Klitzing R. Photoresponsive self-assemblies based on fatty acids. Chem Commun. 2015;51(14):2907–10.

    Article 
    CAS 

    Google Scholar
     

  • Ghezzi M, Pescina S, Delledonne A, et al. Improvement of imiquimod solubilization and skin retention via TPGS micelles: exploiting the co-solubilizing effect of oleic acid. Pharmaceutics. 2021;13(9):1476.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tampucci S, Guazzelli L, Burgalassi S, et al. pH-responsive nanostructures based on surface active fatty acid-protic ionic liquids for imiquimod delivery in skin cancer topical therapy. Pharmaceutics. 2020;12(11):1078.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghezzi M, Ferraboschi I, Delledonne A, et al. Cyclosporine-loaded micelles for ocular delivery: investigating the penetration mechanisms. J Control Release. 2022;349:744–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Sun L, Zhou L, Cheng Y, Cao F. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym. 2020;227:115356.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Seah I, Xue K, et al. Antiangiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv Mater. 2022;34(25):e2108360.

    Article 
    PubMed 

    Google Scholar
     

  • Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release. 2022;345:625–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Zheng S, Hu X, et al. Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers (Basel). 2020;12(6):1237.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akhter S, Anwar M, Siddiqui MA, et al. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: formulation development, in-vitro and in-vivo studies. Colloids Surf B Biointerfaces. 2016;148:19–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye—Part I—Barriers and determining factors in ocular delivery. Eur J Pharm Biopharm. 2017;110:70–5.

    Article 
    PubMed 

    Google Scholar
     

  • Meng T, Kulkarni V, Simmers R, Brar V, Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019;24(8):1524–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang C, Cano-Vega MA, Yue F, et al. Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity. Mol Ther. 2022;30(1):502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang C, Kuang L, Merkel MP, et al. Biodegradable polymeric microsphere-based drug delivery for inductive browning of fat. Front Endocrinol (Lausanne). 2015;6:169.

    Article 
    PubMed 

    Google Scholar
     

  • Pandit J, Sultana Y, Aqil M. Chitosan coated nanoparticles for efficient delivery of bevacizumab in the posterior ocular tissues via subconjunctival administration. Carbohydr Polym. 2021;267:118217.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim SN, Min CH, Kim YK, et al. Iontophoretic ocular delivery of latanoprost-loaded nanoparticles via skin-attached electrodes. Acta Biomater. 2022;144:32–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen DD, Luo LJ, Lai JY. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma. Acta Biomater. 2020;111:302–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnichels S, Hurst J, de Vries JW, et al. Improved treatment options for glaucoma with brimonidine-loaded lipid DNA nanoparticles. ACS Appl Mater Interfaces. 2021;13(8):9445–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Liangbo, Feng Wu, Pang Yan, Yan Dan, Zhang Siyi, Chen Fangjie, Nianxuan Wu, Gong Danni, Liu Jinyao, Yao Fu, Fan Xianqun. Therapeutic nanocoating of ocular surface. Nano Today. 2021;41:101309.

    Article 
    CAS 

    Google Scholar
     

  • Li M, Xu Z, Zhang L, et al. Targeted noninvasive treatment of choroidal neovascularization by hybrid cell-membrane-cloaked biomimetic nanoparticles. ACS Nano. 2021;15(6):9808–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peltonen L, Hirvonen J. Drug nanocrystals—versatile option for formulation of poorly soluble materials. Int J Pharm. 2018;537(1–2):73–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Control Release. 2017;260:202–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Jiao J, Niu M, et al. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: current evidence, challenges, and future prospective. Int J Nanomed. 2021;16:6497–530.

    Article 

    Google Scholar
     

  • Tai L, Liu C, Jiang K, et al. A novel penetratin-modified complex for noninvasive intraocular delivery of antisense oligonucleotides. Int J Pharm. 2017;529(1–2):347–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Josyula A, Omiadze R, Parikh K, et al. An ion-paired moxifloxacin nanosuspension eye drop provides improved prevention and treatment of ocular infection. Bioeng Transl Med. 2021;6(3):e10238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Millán E, Quintáns-Carballo M, Otero-Espinar FJ. Improved release of triamcinolone acetonide from medicated soft contact lenses loaded with drug nanosuspensions. Int J Pharm. 2017;525(1):226–36.

    Article 
    PubMed 

    Google Scholar
     

  • Yan R, Xu L, Wang Q, Wu Z, Zhang H, Gan L. Cyclosporine A nanosuspensions for ophthalmic delivery: a comparative study between cationic nanoparticles and drug-core mucus penetrating nanoparticles. Mol Pharm. 2021;18(12):4290–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Vora LK, Mishra D, et al. Nanosuspension-loaded dissolving bilayer microneedles for hydrophobic drug delivery to the posterior segment of the eye. Biomater Adv. 2022;137:212767.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020;24:3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimple, Newton MJ. Impact of ocular compatible lipoids and castor oil in fabrication of brimonidine tartrate nanoemulsions by 33 full factorial design. Recent Pat Inflamm Allergy Drug Discov. 2018;12(2):169–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qamar Z, Qizilbash FF, Iqubal MK, et al. Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul. 2019;13(4):246–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012:604204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter. 2016;12(11):2826–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daull P, Lallemand F, Garrigue JS. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol. 2014;66(4):531–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10(3):808–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurišić Dukovski B, Juretić M, Bračko D, et al. Functional ibuprofen-loaded cationic nanoemulsion: development and optimization for dry eye disease treatment. Int J Pharm. 2020;576:118979.

    Article 
    PubMed 

    Google Scholar
     

  • Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm. 2013;443(1–2):293–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahboobian MM, Mohammadi M, Mansouri Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J Drug Deliv Sci Technol. 2020;55:101400.

    Article 
    CAS 

    Google Scholar
     

  • Bhalerao H, Koteshwara KB, Chandran S. Design, optimisation and evaluation of in situ gelling nanoemulsion formulations of brinzolamide. Drug Deliv Transl Res. 2020;10(2):529–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youssef AAA, Cai C, Dudhipala N, Majumdar S. Design of topical ocular ciprofloxacin nanoemulsion for the management of bacterial keratitis. Pharmaceuticals (Basel). 2021;14(3):210.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ismail A, Nasr M, Sammour O. Nanoemulsion as a feasible and biocompatible carrier for ocular delivery of travoprost: improved pharmacokinetic/pharmacodynamic properties. Int J Pharm. 2020;583:119402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Üstündag-Okur N, Gökçe EH, Eğrilmez S, Özer Ö, Ertan G. Novel ofloxacin-loaded microemulsion formulations for ocular delivery. J Ocul Pharmacol Ther. 2014;30(4):319–32.

    Article 
    PubMed 

    Google Scholar
     

  • Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a review. Syst Rev Pharm. 2016;8:39–47.

    Article 

    Google Scholar
     

  • Cunha Júnior AdS, Fialho SL, Carneiro LB, Oréfice F. Microemulsions as drug delivery systems for topical ocular administration. Arquivos Brasileiros de Oftalmologia. 2003;66:385–91.

    Article 

    Google Scholar
     

  • Üstündağ Okur N, Er S, Çağlar E, Ekmen T, Sala F. Formulation of microemulsions for dermal delivery of Cephalexin. Acta Pharm Sci. 2017;55(4):27.


    Google Scholar
     

  • Mahran A, Ismail S, Allam AA. Development of triamcinolone acetonide-loaded microemulsion as a prospective ophthalmic delivery system for treatment of uveitis: in vitro and in vivo evaluation. Pharmaceutics. 2021;13(4):444.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santonocito M, Zappulla C, Viola S, et al. Assessment of a new nanostructured microemulsion system for ocular delivery of sorafenib to posterior segment of the eye. Int J Mol Sci. 2021;22(9):4404.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rupenthal ID, Agarwal P, Uy B, et al. Preparation and characterisation of a cyclodextrin-complexed mānuka honey microemulsion for eyelid application. Pharmaceutics. 2022;14(7):1493.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deepak Amar, Goyal AK, Rath G. Nanofiber in transmucosal drug delivery. J Drug Deliv Sci Technol. 2018;43(2017):379–87.

    Article 
    CAS 

    Google Scholar
     

  • Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem. 2022;10:850757.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zupančič Š, Sinha-Ray S, Sinha-Ray S, Kristl J, Yarin AL. Long-term sustained ciprofloxacin release from pmma and hydrophilic polymer blended nanofibers. Mol Pharm. 2016;13(1):295–305.

    Article 
    PubMed 

    Google Scholar
     

  • Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016;240:77–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Da Silva GR, Lima TH, Fernandes-Cunha GM, et al. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers. Eur J Pharm Biopharm. 2019;142:20–30.

    Article 
    PubMed 

    Google Scholar
     

  • Carracedo-Rodríguez G, Martínez-Águila A, Rodriguez-Pomar C, Bodas-Romero J, Sanchez-Naves J, Pintor J. Effect of nutritional supplement based on melatonin on the intraocular pressure in normotensive subjects. Int Ophthalmol. 2020;40(2):419–22.

    Article 
    PubMed 

    Google Scholar
     

  • Ferreira de Melo IM, Martins Ferreira CG, da Silva Lima, Souza EH, et al. Melatonin regulates the expression of inflammatory cytokines, VEGF and apoptosis in diabetic retinopathy in rats. Chem Biol Interact. 2020;327:109183.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harpsøe NG, Andersen LP, Gögenur I, Rosenberg J. Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol. 2015;71(8):901–9.

    Article 
    PubMed 

    Google Scholar
     

  • Andersen LP, Werner MU, Rosenkilde MM, et al. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol Toxicol. 2016;17:8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romeo A, Kazsoki A, Omer S, et al. Formulation and characterization of electrospun nanofibers for melatonin ocular delivery. Pharmaceutics. 2023;15(4):1296.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohde F, Walther M, Wächter J, Knetzger N, Lotz C, Windbergs M. In-situ tear fluid dissolving nanofibers enable prolonged viscosity-enhanced dual drug delivery to the eye. Int J Pharm. 2022;616:121513.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tawfik EA, Alshamsan A, Abul Kalam M, et al. In vitro and in vivo biological assessment of dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion. Int J Pharm. 2021;604:120732.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esentürk I, Erdal MS, Güngör S. Electrospinning method to produce drug-loaded nanofibers for topical/transdermal drug delivery applications. J Fac Pharm Istanb Univ. 2016;46:49–64.


    Google Scholar
     

  • Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges. J Control Release. 2020;321:324–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sridhar R, Lakshminarayanan R, Madhaiyan K, Amutha Barathi V, Lim KH, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev. 2015;44(3):790–814.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yaylaci S, Dinç E, Aydın B, Tekinay AB, Guler MO. Peptide nanofiber system for sustained delivery of anti-vegf proteins to the eye vitreous. Pharmaceutics. 2023;15(4):1264.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi X, Zhou T, Huang S, et al. An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound healing. Acta Biomater. 2023;158:266–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei S, Yin R, Tang T, et al. Gas-permeable, irritation-free, transparent hydrogel contact lens devices with metal-coated nanofiber mesh for eye interfacing. ACS Nano. 2019;13(7):7920–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther. 2013;29(2):151–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spataro G, Malecaze F, Turrin CO, et al. Designing dendrimers for ocular drug delivery. Eur J Med Chem. 2010;45(1):326–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaikh A, Kesharwani P, Gajbhiye V. Dendrimer as a momentous tool in tissue engineering and regenerative medicine. J Control Release. 2022;346:328–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romanowski EG, Yates KA, Paull JRA, Heery GP, Shanks RMQ. Topical astodrimer sodium, a non-toxic polyanionic dendrimer, demonstrates antiviral activity in an experimental ocular adenovirus infection model. Molecules. 2021;26(11):3419.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kambhampati SP, Bhutto IA, Wu T, et al. Systemic dendrimer nanotherapies for targeted suppression of choroidal inflammation and neovascularization in age-related macular degeneration. J Control Release. 2021;335:527–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Li B, Huang D, et al. Nano-in-nano dendrimer gel particles for efficient topical delivery of antiglaucoma drugs into the eye. Chem Eng J. 2021;425:130498.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge X, Wei M, He S, Yuan WE. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2):55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keam SJ, Scott LJ, Curran MP. Verteporfin: a review of its use in the management of subfoveal choroidal neovascularisation. Drugs. 2003;63(22):2521–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tavakoli S, Peynshaert K, Lajunen T, et al. Ocular barriers to retinal delivery of intravitreal liposomes: impact of vitreoretinal interface. J Control Release. 2020;328:952–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lajunen T, Nurmi R, Kontturi L, et al. Light activated liposomes: functionality and prospects in ocular drug delivery. J Control Release. 2016;244(Pt B):157–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Wu J, Lin X, et al. Tacrolimus loaded cationic liposomes for dry eye treatment. Front Pharmacol. 2022;13:838168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39.

    Article 
    PubMed 

    Google Scholar
     

  • Gan L, Wang J, Jiang M, et al. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18(5–6):290–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv. 2021;18(1):55–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farha AK, Gan RY, Li HB, et al. The anticancer potential of the dietary polyphenol rutin: current status, challenges, and perspectives. Crit Rev Food Sci Nutr. 2022;62(3):832–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wichayapreechar P, Anuchapreeda S, Phongpradist R, Rungseevijitprapa W, Ampasavate C. Dermal targeting of Centella asiatica extract using hyaluronic acid surface modified niosomes. J Liposome Res. 2020;30(2):197–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kattar A, Quelle-Regaldie A, Sánchez L, Concheiro A, Alvarez-Lorenzo C. Formulation and characterization of epalrestat-loaded polysorbate 60 cationic niosomes for ocular delivery. Pharmaceutics. 2023;15(4):1247.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes integrated within pH-sensitive in situ forming gel for management of glaucoma. Int J Pharm. 2021;598:120380.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fathalla D, Fouad EA, Soliman GM. Latanoprost niosomes as a sustained release ocular delivery system for the management of glaucoma. Drug Dev Ind Pharm. 2020;46(5):806–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coursey TG, Henriksson JT, Marcano DC, et al. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release. 2015;213:168–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcano DC, Shin CS, Lee B, et al. Synergistic cysteamine delivery nanowafer as an efficacious treatment modality for corneal cystinosis. Mol Pharm. 2016;13(10):3468–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan X, Marcano DC, Shin CS, et al. Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano. 2015;9(2):1749–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dourado LFN, da Silva CN, Gonçalves RS, et al. Improvement of PnPP-19 peptide bioavailability for glaucoma therapy: design and application of nanowafers based on PVA. J Drug Deliv Sci Technol. 2022;74:103501.

    Article 
    CAS 

    Google Scholar
     

  • Rykowska I, Nowak I, Nowak R. Soft contact lenses as drug delivery systems: a review. Molecules. 2021;26(18):5577.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peral A, Martinez-Aguila A, Pastrana C, Huete-Toral F, Carpena-Torres C, Carracedo G. Contact lenses as drug delivery system for glaucoma: a review. Appl Sci. 2020;10(15):5151.

    Article 
    CAS 

    Google Scholar
     

  • Filipe HP, Henriques J, Reis P, Silva PC, Quadrado MJ, Serro AP. Contact lenses as drug controlled release systems: a narrative review. Rev Bras Oftalmol. 2016;75:241–7.

    Article 

    Google Scholar
     

  • Choi SW, Kim J. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials (Basel). 2018;11(7):1125.

    Article 
    PubMed 

    Google Scholar
     

  • Hsu KH, Carbia BE, Plummer C, Chauhan A. Dual drug delivery from vitamin E loaded contact lenses for glaucoma therapy. Eur J Pharm Biopharm. 2015;94:312–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soeken TA, Ross AE, Kohane DS, et al. Dexamethasone-eluting contact lens for the prevention of postphotorefractive keratectomy scar in a New Zealand white rabbit model. Cornea. 2021;40(9):1175–80.

    Article 
    PubMed 

    Google Scholar
     

  • Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016;23(8):3017–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shayani Rad M, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Preparation, characterization, and evaluation of zinc oxide nanoparticles suspension as an antimicrobial media for daily use soft contact lenses. Curr Eye Res. 2020;45(8):931–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bin Sahadan MY, Tong WY, Tan WN, et al. Phomopsidione nanoparticles coated contact lenses reduce microbial keratitis causing pathogens. Exp Eye Res. 2019;178:10–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao Z, Huo Q, Lin X, et al. Drug-free contact lens based on quaternized chitosan and tannic acid for bacterial keratitis therapy and corneal repair. Carbohydr Polym. 2022;286:119314.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding X, Ben-Shlomo G, Que L. Soft contact lens with embedded microtubes for sustained and self-adaptive drug delivery for glaucoma treatment. ACS Appl Mater Interfaces. 2020;12(41):45789–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper RC, Yang H. Hydrogel-based ocular drug delivery systems: emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J Control Release. 2019;306:29–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irimia T, Dinu-Pîrvu CE, Ghica MV, et al. Chitosan-based in situ gels for ocular delivery of therapeutics: a state-of-the-art review. Mar Drugs. 2018;16(10):373.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sacco P, Furlani F, De Marzo G, Marsich E, Paoletti S, Donati I. Concepts for developing physical gels of chitosan and of chitosan derivatives. Gels. 2018;4(3):67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev. 2021;174:482–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arranz-Romera A, Esteban-Pérez S, Garcia-Herranz D, Aragón-Navas A, Bravo-Osuna I, Herrero-Vanrell R. Combination therapy and co-delivery strategies to optimize treatment of posterior segment neurodegenerative diseases. Drug Discov Today. 2019;24(8):1644–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin S, Ge C, Wang D, et al. Overcoming the anatomical and physiological barriers in topical eye surface medication using a peptide-decorated polymeric micelle. ACS Appl Mater Interfaces. 2019;11(43):39603–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang G, Wang Q, Yang X, Qian Y, Zhang G, Tang B. γ-Cyclodextrin-based polypseudorotaxane hydrogels for ophthalmic delivery of flurbiprofen to treat anterior uveitis. Carbohydr Polym. 2022;277:118889.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung JH, Kim SS, Chung H, Hejri A, Prausnitz MR. Six-month sustained delivery of anti-VEGF from in-situ forming hydrogel in the suprachoroidal space. J Control Release. 2022;352:472–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao H, Chen M, Liu Y, et al. Injectable anti-inflammatory supramolecular nanofiber hydrogel to promote anti-VEGF therapy in age-related macular degeneration treatment. Adv Mater. 2023;35(2):e2204994.

    Article 
    PubMed 

    Google Scholar
     

  • Lee K, Goudie MJ, Tebon P, et al. Non-transdermal microneedles for advanced drug delivery. Adv Drug Deliv Rev. 2020;165–166:41–59.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu J, Zhou X, Kim HJ, et al. Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid. Small. 2020;16(16):e1905910.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang J, Moore JS, Edelhauser HF, Prausnitz MR. Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res. 2009;26(2):395–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta P, Yadav KS. Applications of microneedles in delivering drugs for various ocular diseases. Life Sci. 2019;237:116907.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi H, Zhou J, Wang Y, et al. A rapid corneal healing microneedle for efficient ocular drug delivery. Small. 2022;18(4):e2104657.

    Article 
    PubMed 

    Google Scholar
     

  • Cui M, Zheng M, Wiraja C, et al. Ocular delivery of predatory bacteria with cryomicroneedles against eye infection. Adv Sci (Weinh). 2021;8(21):e2102327.

    Article 
    PubMed 

    Google Scholar
     

  • Lee K, Park S, Jo DH, et al. Self-plugging microneedle (SPM) for intravitreal drug delivery. Adv Healthc Mater. 2022;11(12):e2102599.

    Article 
    PubMed 

    Google Scholar
     

  • Tawfik M, Chen F, Goldberg JL, Sabel BA. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(12):1477–507.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musarella MA. Gene mapping of ocular diseases. Surv Ophthalmol. 1992;36(4):285–312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular disease therapeutics: design and delivery of drugs for diseases of the eye. J Med Chem. 2020;63(19):10533–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29(2):464–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359(6372):eaan4672.

    Article 
    PubMed 

    Google Scholar
     

  • Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther. 2022;22(2):104–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren W, Duan S, Dai C, Xie C, Jiang L, Shi Y. Nanotechnology lighting the way for gene therapy in ophthalmopathy: from opportunities toward applications. Molecules. 2023;28(8):3500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colella P, Cotugno G, Auricchio A. Ocular gene therapy: current progress and future prospects. Trends Mol Med. 2009;15(1):23–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastola P, Song L, Gilger BC, Hirsch ML. Adeno-associated virus mediated gene therapy for corneal diseases. Pharmaceutics. 2020;12(8):767.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarallo V, Bogdanovich S, Hirano Y, et al. Inhibition of choroidal and corneal pathologic neovascularization by Plgf1-de gene transfer. Invest Ophthalmol Vis Sci. 2012;53(13):7989–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Tai PWL, Ai J, et al. Transcriptome profiling of neovascularized corneas reveals miR-204 as a multi-target biotherapy deliverable by rAAVs. Mol Ther Nucleic Acids. 2018;10:349–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaemmerer WF. How will the field of gene therapy survive its success? Bioeng Transl Med. 2018;3(2):166–77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang J, Zhang X, Tang Y, Li S, Chen J. Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol. 2021;35(1):4–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13(3–4):135–43.

    PubMed 

    Google Scholar
     

  • Ma Y, Lin H, Wang P, et al. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater. 2023;155:538–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro MCS, de Miranda MC, Cunha PDS, et al. Neuroprotective effect of siRNA entrapped in hyaluronic acid-coated lipoplexes by intravitreal administration. Pharmaceutics. 2021;13(6):845.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar S, Fry LE, Wang JH, et al. RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res. 2023;92:101110.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell SR, Drack AV, Cideciyan AV, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med. 2022;28(5):1014–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Supe S, Upadhya A, Singh K. Role of small interfering RNA (siRNA) in targeting ocular neovascularization: a review. Exp Eye Res. 2021;202:108329.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Zhao P, Chen Z, Wang H, Wang Y, Lin Q. Non-viral gene therapy using RNA interference with PDGFR-α mediated epithelial-mesenchymal transformation for proliferative vitreoretinopathy. Mater Today Bio. 2023;20:100632.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhurandhar D, Sahoo NK, Mariappan I, Narayanan R. Gene therapy in retinal diseases: a review. Indian J Ophthalmol. 2021;69(9):2257–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo N, Liu JB, Li W, Ma YS, Fu D. The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res. 2022;40:135–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Ther. 2022;29(1–2):81–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung SH, Sin TN, Dang B, et al. CRISPR-based VEGF suppression using paired guide RNAs for treatment of choroidal neovascularization. Mol Ther Nucleic Acids. 2022;28:613–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banskota S, Raguram A, Suh S, et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 2022;185(2):250-265.e16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manukonda R, Attem J, Yenuganti VR, Kaliki S, Vemuganti GK. Exosomes in the visual system: new avenues in ocular diseases. Tumour Biol. 2022;44(1):129–52.

    Article 
    PubMed 

    Google Scholar
     

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19(1):47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Peng Z, Yuan L, et al. Research progress of exosomes in pathogenesis, diagnosis, and treatment of ocular diseases. Front Bioeng Biotechnol. 2023;11:1100310.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X, Lei Y, Yu Z, et al. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics. 2021;11(11):5107–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian Y, Zhang F, Qiu Y, et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat Biomed Eng. 2021;5(9):968–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou T, He C, Lai P, et al. miR-204-containing exosomes ameliorate GVHD-associated dry eye disease. Sci Adv. 2022;8(2):eabj9617.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16(7):748–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano. 2018;12(7):6830–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat Commun. 2018;9(1):1305.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siqueira Jørgensen SD, Al Sawaf M, Graeser K, Mu H, Müllertz A, Rades T. The ability of two in vitro lipolysis models reflecting the human and rat gastro-intestinal conditions to predict the in vivo performance of SNEDDS dosing regimens. Eur J Pharm Biopharm. 2018;124:116–24.

    Article 
    PubMed 

    Google Scholar
     

  • Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. Eur J Pharm Sci. 2000;11(Suppl 2):S93–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ujhelyi Z, Vecsernyés M, Fehér P, et al. Physico-chemical characterization of self-emulsifying drug delivery systems. Drug Discov Today Technol. 2018;27:81–6.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Xu D, Yuan Y, et al. Advances of spontaneous emulsification and its important applications in enhanced oil recovery process. Adv Colloid Interface Sci. 2020;277:102119.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-emulsifying drug-delivery systems: from the development to the current applications and challenges in oral drug delivery. Pharmaceutics. 2020;12(12):1194.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, et al. Development of an osmoprotective microemulsion as a therapeutic platform for ocular surface protection. Int J Pharm. 2022;623:121948.

    Article 
    PubMed 

    Google Scholar
     

  • Kontogiannidou E, Meikopoulos T, Gika H, et al. In vitro evaluation of self-nano-emulsifying drug delivery systems (SNEDDS) containing room temperature ionic liquids (RTILs) for the oral delivery of amphotericin B. Pharmaceutics. 2020;12(8):699.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1(2):172–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang T, Wei C, Wu X, et al. Characterization and evaluation of rapamycin-loaded nano-micelle ophthalmic solution. J Funct Biomater. 2023;14(1):49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barenholz Y. Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toropainen E, Fraser-Miller SJ, Novakovic D, et al. Biopharmaceutics of topical ophthalmic suspensions: importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics. 2021;13(4):452.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Younes NF, Abdel-Halim SA, Elassasy AI. Corneal targeted Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm. 2018;553(1–2):386–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bali V, Ali M, Ali J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf B Biointerfaces. 2010;76(2):410–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamilvanan S, Benita S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur J Pharm Biopharm. 2004;58(2):357–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apaolaza PS, Delgado D, del Pozo-Rodríguez A, Gascón AR, Solinís MÁ. A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int J Pharm. 2014;465(1–2):413–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fangueiro JF, Andreani T, Egea MA, et al. Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. Int J Pharm. 2014;461(1–2):64–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fahmy AM, Hassan M, El-Setouhy DA, Tayel SA, Al-Mahallawi AM. Voriconazole ternary micellar systems for the treatment of ocular mycosis: statistical optimization and in vivo evaluation. J Pharm Sci. 2021;110(5):2130–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balguri SP, Adelli GR, Janga KY, Bhagav P, Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. Int J Pharm. 2017;529(1–2):32–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayak K, Misra M. Triamcinolone acetonide-Loaded PEGylated microemulsion for the posterior segment of eye. ACS Omega. 2020;5(14):7928–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakhani P, Patil A, Wu KW, et al. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int J Pharm. 2019;572:118771.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Craig JP, Simmons PA, Patel S, Tomlinson A. Refractive index and osmolality of human tears. Optom Vis Sci. 1995;72(10):718–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel N, Nakrani H, Raval M, Sheth N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv. 2016;23(9):3712–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fialho SL, da Silva-Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol. 2004;32(6):626–32.

    Article 
    PubMed 

    Google Scholar
     

  • López-Alemany A, Montés-Micó R, García-Valldecabres M. Ocular physiology and artificial tears. J Am Optom Assoc. 1999;70(7):455–60.

    PubMed 

    Google Scholar
     

  • Moiseev RV, Steele F, Khutoryanskiy VV. Polyaphron formulations stabilised with different water-soluble polymers for ocular drug delivery. Pharmaceutics. 2022;14(5):926.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radomska-Soukharev A, Wojciechowska J. Microemulsions as potential ocular drug delivery systems: phase diagrams and physical properties depending on ingredients. Acta Pol Pharm. 2005;62(6):465–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Doshi U, Xu J. Effect of viscosity, surface tension and mucoadhesion on ocular residence time of lubricant eye drops. Invest Ophthalmol Vis Sci. 2009;50(13):4641–4641.


    Google Scholar
     

  • Luo Q, Zhao J, Zhang X, Pan W. Nanostructured lipid carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm. 2011;403(1–2):185–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom. 2012;95(1):3–11.

    Article 
    PubMed 

    Google Scholar
     

  • Murube J. Tear osmolarity. Ocul Surf. 2006;4(2):62–73.

    Article 
    PubMed 

    Google Scholar
     

  • Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12(3):269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shetty R, Naidu JR, Nair AP, et al. Distinct ocular surface soluble factor profile in human corneal dystrophies. Ocul Surf. 2020;18(2):237–48.

    Article 
    PubMed 

    Google Scholar
     

  • Romeo A, Musumeci T, Carbone C, et al. Ferulic acid-loaded polymeric nanoparticles for potential ocular delivery. Pharmaceutics. 2021;13(5):687.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carnevale C, Riva I, Roberti G, et al. Confocal microscopy and anterior segment optical coherence tomography imaging of the ocular surface and bleb morphology in medically and surgically treated glaucoma patients: a review. Pharmaceuticals (Basel). 2021;14(6):581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalil IA, Ali IH, El-Sherbiny IM. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: in vitro, ex vivo and in vivo evaluation. Nanomedicine (Lond). 2019;14(1):33–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonardi A, Bucolo C, Romano GL, et al. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int J Pharm. 2014;470(1–2):133–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ammar HO, Haider M, Ibrahim M, El Hoffy NM. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 2017;24(1):414–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavakoli M, Mahboobian MM, Nouri F, Mohammadi M. Studying the ophthalmic toxicity potential of developed ketoconazole loaded nanoemulsion in situ gel formulation for ophthalmic administration. Toxicol Mech Methods. 2021;31(8):572–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahboobian MM, Seyfoddin A, Aboofazeli R, Foroutan SM, Rupenthal ID. Brinzolamide-loaded nanoemulsions: ex vivo transcorneal permeation, cell viability and ocular irritation tests. Pharm Dev Technol. 2019;24(5):600–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ames P, Galor A. Cyclosporine ophthalmic emulsions for the treatment of dry eye: a review of the clinical evidence. Clin Investig (Lond). 2015;5(3):267–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boujnah Y, Mouchel R, El-Chehab H, Dot C, Burillon C, Kocaba V. Étude prospective, monocentrique, non contrôlée de l’efficacité, de la tolérance et de l’adhésion au traitement par ciclosporine 0,1 % au cours des sécheresses oculaires sévères [Prospective, monocentric, uncontrolled study of efficacy, tolerance and adherence of cyclosporin 0.1 % for severe dry eye syndrome]. J Fr Ophtalmol. 2018;41(2):129–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular Pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease. Pharm Res. 2019;36(2):36.

    Article 
    PubMed 

    Google Scholar
     

  • Henostroza M, Melo K, Yukuyama MN, Löbenberg R, Bou-Chacra NA. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf, A. 2020;597:124755.

    Article 

    Google Scholar
     

  • Kagkelaris K, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol. 2022;14:25158414221112356.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eroglu YI. A comparative review of Haute Autorité de Santé and National Institute for Health and Care Excellence health technology assessments of Ikervis® to treat severe keratitis in adult patients with dry eye disease which has not improved despite treatment with tear substitutes. J Mark Access Health Policy. 2017;5(1):1336043.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14.

    Article 
    PubMed 

    Google Scholar
     

  • Wentz SM, Price F, Harris A, Siesky B, Ciulla T. Efficacy and safety of bromfenac 0.075% formulated in DuraSite for pain and inflammation in cataract surgery. Expert Opin Pharmacother. 2019;20(14):1703–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 2018;35(12):245.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn SJ, Hong HK, Na YM, et al. Use of rabbit eyes in pharmacokinetic studies of intraocular drugs. J Vis Exp. 2016;113:53878.


    Google Scholar
     

  • U.S. National Library of Medicine, A randomized controlled trial comparing urea loaded nanoparticles to placebo: a new concept for cataract management, NCT03001466, 2016.

  • Kim T, Sall K, Holland EJ, Brazzell RK, Coultas S, Gupta PK. Safety and efficacy of twice daily administration of KPI-121 1% for ocular inflammation and pain following cataract surgery. Clin Ophthalmol. 2018;13:69–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • U.S. National Library of Medicine, POLAT-001 compared to latanoprost ophthalmic solution in patients with ocular hypertension and open-angle glaucoma, NCT02466399, 2020.

  • Wang LR, Wang Y, Wang SLW, Jingjing JC, Xingguo H. Seed crystal nanoparticles tetrandrine ophthalmic formulation and preparation method. C.N. Patent CN 1,05,726,484 B, 2016.

  • Jialu WLR, Ruijuan LWL, Ze ZFW. Puerarin and scutellarin lipid nanoparticle ophthalmic preparation and preparation method thereof. C.N. Patent CN 1,08,066,315 A, 2016.

  • Li CY, Li YP, Ying WH, Hangping C. Timolol maleate cubic liquid crystal nanoparticle eye drops and preparation method thereof. C.N. Patent CN 1,06,619,573 A, 2016.

  • Lee JY, Shin YJ, Sang-Rok R. ophthalmic nanoemulsion composition containing cyclosporine and method for preparing same, PH12015502587B1, 2016.

  • Wang SJ, Cha KH, Kang H, Sun BK. Cyclosporine-containing non-irritative nanoemulsion ophthalmic composition, US 9,320,801 B2, 2016.

  • XU S, Zhu Y, Fan Q, Ou S, Liu X. nanosuspension of tobramycin and dexamethasone and preparation method thereof, CN105708844, 2016.

  • Weiss, S.L. Treatment of glaucoma and/or retinal diseases. WO 2017152129A2, 9 August 2017.

  • Yates CR, Smith JS, Miller DD, Toutounchian JJ. Method for regulating retinal endothelial cell viability, in, US 9,566,255, 2017.

  • Chen H, Enlow EM, Popov A. Pharmaceutical nanoparticles showing improved mucosal transport. A.U. Patent AU 2,013,256,092 B2, 2017.

  • Campora G. Nanoparticle ophthalmic composition for the treatment of ocular disorders or diseases. U.S. Patent US 20,190,070,242 A1, 2018.

  • Dongwoo L, Hyunju B, Younggwan K. Non-irritant ophthalmic composition containing cyclosporin, and convenient preparation method, US 15/747,618, 2018.

  • Yates CR, Smith JS, Miller DD, Toutounchian JJ. Method for regulating retinal endothelial cell viability, in, US 10,010,516, 2018.

  • Lopes FP, Jose E. Compositions of jasmonate compounds and methods of use. US 20,180,000,958 A1, 2018.

  • Arumugham R, Upadhyay AK. Ophthalmic compositions and methods of use. U.S. Patent US 20,190,008,920 A1, 2018.

  • Venkatraman S, Natarajan JV, Howden T, Boey F. inventors; Nanyang Technological University, Singapore Health Services Pte Ltd, assignee. Stable liposomal formulations for ocular drug delivery. United States patent US 9,956,195. 2018 May 1.

  • Barman SP, Liu M, Barman K, Ward KL, Hackett B. inventors; Integral Biosystems LLC, assignee. Methods and biocompatible compositions to achieve sustained drug release in the eye. United States patent US 9,931,306. 2018 Apr 3.

  • Fu J, Campochiaro PA, Hanes JS. inventors; Johns Hopkins University, assignee. Non-linear multiblock copolymer-drug conjugates for the delivery of active agents. United States patent application US 16/182,261. 2019 Mar 7.

  • Davis ME, Davishan ME, Han H. Nanoparticles stabilized by nitrophenylboronic acid composition. JP 2,019,108,372A, 2019.

  • Lee HC. Drug delivery implant for treating eye diseases, and preparation method therefore. WO 2,019,160,306A1, 2019.

  • Liposome Corticosteroid for the Locally Injecting in Inflammation Lesion or Region. CN 109906075A, 18 June 2019.

  • Aquilue JS, Gris MDCL, Gan˜an MID. ´ An oil-in-water nanoemulsion composition of clobetasol, in: WO2018233878A1, 2019.

  • Rasappa Arumugham AU. Ophthalmic compositions and methods of use, in: WO2020047197A1, 2020.

  • Junyeop L, Jae SY, Sang-rok R. Eye composition containing a cyclosporine and a method of preparing the same. KR20200000395A, 2 January 2020.

  • Chul-hwan K, Hyun-seop N, Hye-min K, Da-hye S. A surfactant-free type ophthalmic nano-emulsion composition, and the manufacturing method thereof. KR 20200053205A, 18 May 2020.

  • Qing D. Nanocrystalline eye drop, preparation method and application thereof. CN 110664757A, 28 May 2020.

  • Jain S, Kompella UB, Musunuri S. Preservative free ocular compositions and methods for using the same for treating dry eye disease and other eye disorders, in: US10751337B2, 2020.