Nanotechnology

Nanotube patterning reduces macrophage inflammatory response via nuclear mechanotransduction | Journal of Nanobiotechnology


  • Zhao Y, Bai L, Zhang Y, Yao R, Sun Y, Hang R, Chen X, Wang H, Yao X, Xiao Y, et al. Type I collagen decorated nanoporous network on titanium implant surface promotes osseointegration through mediating immunomodulation, angiogenesis, and osteogenesis. Biomaterials. 2022;288:121684.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Zhao C, Xu Y, Song L, Chen Y, Xu Y, Ma Y, Wang S, Xu A, He F. Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: single-cell transcriptome analysis. Bioact Mater. 2023;22:404–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batool F, Özçelik H, Stutz C, Gegout PY, Benkirane-Jessel N, Petit C, Huck O. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J Tissue Eng. 2021;12:20417314211041428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration. From understandings to therapeutic applications. Biomaterials. 2021;277:121114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. Osteoimmunology. Interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006;24:33–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh MC, Takegahara N, Kim H, Choi Y. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol. 2018;14:146–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Wang H, Zhang T, Cai L, Kong C, He J. Current Knowledge Regarding the Interaction Between Oral Bone Metabolic Disorders and Diabetes Mellitus. Front Endocrinol. 2020;11.

  • de Oliveira P, Bonfante EA, Bergamo ETP, de Souza SLS, Riella L, Torroni A, Benalcazar Jalkh EB, Witek L, Lopez CD, Zambuzzi WF, et al. Obesity/Metabolic syndrome and diabetes Mellitus on Peri-implantitis. Trends Endocrinol Metab. 2020;31:596–610.

    Article 
    PubMed 

    Google Scholar
     

  • Gibon E, Lu LY, Nathan K, Goodman SB. Inflammation, ageing, and bone regeneration. J Orthop Translat. 2017;10:28–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dereka X, Calciolari E, Donos N, Mardas N. Osseointegration in osteoporotic-like condition: a systematic review of preclinical studies. J Periodontal Res. 2018;53:933–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Xiong Y, Zhao R, Li X, Jia W. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. J Nanobiotechnol. 2022;20:68.

    Article 

    Google Scholar
     

  • Shen Y, Zhang Y, Zhou Z, Wang J, Han D, Sun J, Chen G, Tang Q, Sun W, Chen L. Dysfunction of macrophages leads to diabetic bone regeneration deficiency. Front Immunol. 2022;13.

  • Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 2021;6:2754–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current advances in Immunomodulatory Biomaterials for Bone Regeneration. Adv Healthc Mater. 2019;8:e1801106.

    PubMed 

    Google Scholar
     

  • Chen Z, Bachhuka A, Han S, Wei F, Lu S, Visalakshan RM, Vasilev K, Xiao Y. Tuning Chemistry and Topography of Nanoengineered Surfaces to manipulate Immune response for bone regeneration applications. ACS Nano. 2017;11:4494–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni S, Zhai D, Huan Z, Zhang T, Chang J, Wu C. Nanosized concave pit/convex dot microarray for immunomodulatory osteogenesis and angiogenesis. Nanoscale. 2020;12:16474–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Bachhuka A, Wei F, Wang X, Liu G, Vasilev K, Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale. 2017;9:18129–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Michalski MN, McCauley LK. Macrophages and skeletal health. Pharmacol Ther. 2017;174:43–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christo SN, Bachhuka A, Diener KR, Mierczynska A, Hayball JD, Vasilev K. The role of Surface Nanotopography and Chemistry on Primary Neutrophil and Macrophage Cellular responses. Adv Healthc Mater. 2016;5:956–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atcha H, Jairaman A, Holt JR, Meli VS, Nagalla RR, Veerasubramanian PK, Brumm KT, Lim HE, Othy S, Cahalan MD, et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat Commun. 2021;12:3256.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: how physical factors coregulate macrophage plasticity and phagocytosis. Annu Rev Biomed Eng. 2019;21:267–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meli VS, Atcha H, Veerasubramanian PK, Nagalla RR, Luu TU, Chen EY, Guerrero-Juarez CF, Yamaga K, Pandori W, Hsieh JY et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci Adv. 2020;6.

  • Jain N, Vogel V. Spatial confinement downsizes the inflammatory response of macrophages. Nat Mater. 2018;17:1134–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansel CS, Crowder SW, Cooper S, Gopal S, João Pardelha da Cruz M, de Oliveira Martins L, Keller D, Rothery S, Becce M, Cass AEG, et al. Nanoneedle-mediated stimulation of Cell Mechanotransduction Machinery. ACS Nano. 2019;13:2913–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carthew J, Abdelmaksoud HH, Hodgson-Garms M, Aslanoglou S, Ghavamian S, Elnathan R, Spatz JP, Brugger J, Thissen H, Voelcker NH, et al. Precision Surface Microtopography regulates cell fate via changes to Actomyosin Contractility and Nuclear Architecture. Adv Sci (Weinh). 2021;8:2003186.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janota CS, Calero-Cuenca FJ, Gomes ER. The role of the cell nucleus in mechanotransduction. Curr Opin Cell Biol. 2020;63:204–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013;341:1240104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiu JY, Aires L, Lin Z, Vogel V. Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat Cell Biol. 2018;20:262–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saez A, Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Rius C, Gonzalez-Granado JM. Lamin A/C and the Immune System: One Intermediate Filament, Many Faces. Int J Mol Sci. 2020;21.

  • Toribio-Fernández R, Zorita V, Rocha-Perugini V, Iborra S, Martínez Del Hoyo G, Chevre R, Dorado B, Sancho D, Sanchez-Madrid F, Andrés V, et al. Lamin A/C augments Th1 differentiation and response against vaccinia virus and Leishmania major. Cell Death Dis. 2018;9:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toribio-Fernández R, Herrero-Fernandez B, Zorita V, López JA, Vázquez J, Criado G, Pablos JL, Collas P, Sánchez-Madrid F, Andrés V, et al. Lamin A/C deficiency in CD4(+) T-cells enhances regulatory T-cells and prevents inflammatory bowel disease. J Pathol. 2019;249:509–22.

    Article 
    PubMed 

    Google Scholar
     

  • Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PC, Athirasala A, Kao YR, Cho S, Harada T, Shin JW, et al. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol. 2014;24:1909–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen L, Jiang F, Qiao Y, Li H, Wei Z, Huang T, Lan J, Xia Y, Li J. Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C. J Cell Physiol. 2018;233:5112–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Trigueros-Motos L, Cibrián D, Morlino G, Blanco-Berrocal M, Osorio FG, Freije JMP, López-Otín C, et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal. 2014;7:ra37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rocha-Perugini V, González-Granado JM. Nuclear envelope lamin-A as a coordinator of T cell activation. Nucleus. 2014;5:396–401.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim Y, Bayona PW, Kim M, Chang J, Hong S, Park Y, Budiman A, Kim YJ, Choi CY, Kim WS, et al. Macrophage lamin A/C regulates inflammation and the development of Obesity-Induced insulin resistance. Front Immunol. 2018;9:696.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Meng F, Song W, Jin J, Ma Q, Fei D, Fang L, Chen L, Wang Q, Zhang Y. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment. Int J Nanomedicine. 2018;13:4029–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Cooper LF, Zhang X, Zhang Y, Deng F, Song J, Yang S. Titanium nanotubes induce osteogenic differentiation through the FAK/RhoA/YAP cascade. RSC Adv. 2016;6:44062–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Yang S, Masako N, Lee DJ, Cooper LF, Ko CC. Proliferation of preosteoblasts on TiO2 nanotubes is FAK/RhoA related. RSC Adv. 2015;5:38117–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4:102–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J-Y, Park S-H, Baek JM, Erkhembaatar M, Kim MS, Yoon K-H, Oh J, Lee MS. Harpagoside inhibits RANKL-Induced Osteoclastogenesis via Syk-Btk-PLCγ2-Ca2 + signaling pathway and prevents inflammation-mediated bone loss. J Nat Prod. 2015;78:2167–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Hu B, Zhou X, Zhou C, Meng J, Yang Y, Zhao X, Shi Z, Yan S. Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway. Cell Death Dis. 2018;9:498.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ihalainen TO, Aires L, Herzog FA, Schwartlander R, Moeller J, Vogel V. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat Mater. 2015;14:1252–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain N, Iyer KV, Kumar A, Shivashankar GV. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc Natl Acad Sci U S A. 2013;110:11349–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312:1059–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zonderland J, Moldero IL, Anand S, Mota C, Moroni L. Dimensionality changes actin network through lamin A/C and zyxin. Biomaterials. 2020;240:119854.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol. 1999;147:913–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Y, Zhu L, Cho JS, Li XY, Weiss SJ. Matrix remodeling controls a nuclear lamin A/C-emerin network that directs wnt-regulated stem cell fate. Dev Cell. 2022;57:480–495e486.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature. 2013;497:507–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang J, Li R, Yang J, Cai M, Lee Y, Wang A, Cheng B, Wang Y. Bioadaptation of implants to in vitro and in vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration. Bioact Mater. 2021;6:3164–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Hu H, Zeng M, Chu H, Gan Z, Duan J, Rong M. The survival rates and risk factors of implants in the early stage: a retrospective study. BMC Oral Health. 2021;21:293.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darby I. Risk factors for periodontitis & peri-implantitis. Periodontol 2000. 2022;90:9–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Q, Yuan S, Tang H, Wang S, Mu Z, Li D, Wang S, Jing X, Hu S, Ji P, et al. Safeguarding Osteointegration in Diabetic Patients: a potent “Chain Armor” Coating for scavenging ROS and macrophage reprogramming in a microenvironment-responsive manner. Adv Funct Mater. 2021;31:2101611.

    Article 
    CAS 

    Google Scholar
     

  • Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X, et al. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater. 2022;14:364–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai X, Bai Y, Heng BC, Li Y, Tang Z, Lin C, Liu O, He Y, Zhang X, Deng X. Biomimetic hierarchical implant surfaces promote early osseointegration in osteoporotic rats by suppressing macrophage activation and osteoclastogenesis. J Mater Chem B. 2022;10:1875–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alghamdi HS, Jansen JA. The development and future of dental implants. Dent Mater J. 2020;39:167–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donnaloja F, Carnevali F, Jacchetti E, Raimondi MT. Lamin A/C Mechanotransduction in Laminopathies. Cells. 2020;9.

  • Kim JK, Louhghalam A, Lee G, Schafer BW, Wirtz D, Kim DH. Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun. 2017;8:2123.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holaska JM, Kowalski AK, Wilson KL. Emerin caps the pointed end of actin filaments. Evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol. 2004;2:E231.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar