Nanotechnology

Nanovaccine-based strategies for lymph node targeted delivery and imaging in tumor immunotherapy | Journal of Nanobiotechnology


  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019;16(6):372–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxena M, et al. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, et al. Nanotechnology-based immunotherapies to combat cancer metastasis. Mol Biol Rep. 2021;48(9):6563–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen F, et al. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials. 2021;270: 120709.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, et al. Lymph node-targeting nanovaccines for cancer immunotherapy. J Control Release. 2022;351:102–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4:7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai T, et al. Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy. J Nanobiotechnol. 2021;19(1):389.

    Article 
    CAS 

    Google Scholar
     

  • Najibi AJ, Mooney DJ. Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv Drug Deliv Rev. 2020;161–162:42–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldberg MS. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer. 2019;19(10):587–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, et al. Nanovaccines for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(5): e1559.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li SR, et al. Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. J Nanobiotechnol. 2022;20(1):277.

    Article 

    Google Scholar
     

  • Sharma R, et al. Development, characterization and ex vivo assessment of lipid-polymer based nanocomposite(s) as a potential carrier for site-specific delivery of immunogenic molecules. J Drug Deliv Sci Technol. 2019;51:310–9.

    Article 
    CAS 

    Google Scholar
     

  • Dong H, et al. Biomaterials facilitating dendritic cell-mediated cancer immunotherapy. Adv Sci (Weinh). 2023;10(18): e2301339.

    Article 
    PubMed 

    Google Scholar
     

  • Tian R, et al. Multimodal stratified imaging of nanovaccines in lymph nodes for improving cancer immunotherapy. Adv Drug Deliv Rev. 2020;161–162:145–60.

    Article 
    PubMed 

    Google Scholar
     

  • Sestito LF, et al. Lymphatic-draining nanoparticles deliver Bay K8644 payload to lymphatic vessels and enhance their pumping function. Sci Adv. 2023;9(8): eabq0435.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahin N, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res Int. 2020;27(16):19151–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girard JP, Moussion C, Förster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12(11):762–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sainte-Marie G. The lymph node revisited: development, morphology, functioning, and role in triggering primary immune responses. Anat Rec (Hoboken). 2010;293(2):320–37.

    Article 
    PubMed 

    Google Scholar
     

  • Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node. Nat Rev Immunol. 2020;20(9):566–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis MJ, et al. Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am J Physiol Heart Circ Physiol. 2011;301(1):H48-60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scallan JP, et al. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016;594(20):5749–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol. 2021;56: 101534.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20(12):1483–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ager A. High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front Immunol. 2017;8:45.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baekkevold ES, et al. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med. 2001;193(9):1105–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drayton DL, et al. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol. 2006;7(4):344–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gretz JE, et al. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med. 2000;192(10):1425–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • du Bois H, Heim TA, Lund AW. Tumor-draining lymph nodes: At the crossroads of metastasis and immunity. Sci Immunol. 2021;6(63): eabg3551.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koukourakis MI, Giatromanolaki A. Tumor draining lymph nodes, immune response, and radiotherapy: towards a revisal of therapeutic principles. Biochim Biophys Acta Rev Cancer. 2022;1877(3): 188704.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sautes-Fridman C, et al. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, et al. Tertiary lymphoid organs in cancer immunology: mechanisms and the new strategy for immunotherapy. Front Immunol. 2019;10:1398.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picker LJ, Butcher EC. Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol. 1992;10:561–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngo VN, et al. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med. 1999;189(2):403–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi NS, et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity. 2015;43(3):579–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article 
    PubMed 

    Google Scholar
     

  • Johanns TM, et al. Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res. 2016;4(12):1007–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts EW, et al. Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell. 2016;30(2):324–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salmon H, et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44(4):924–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motz GT, Coukos G. Deciphering and reversing tumor immune suppression. Immunity. 2013;39(1):61–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Workel HH, et al. A transcriptionally distinct CXCL13(+)CD103(+)CD8(+) T-cell population is associated with B-cell recruitment and neoantigen load in human cancer. Cancer Immunol Res. 2019;7(5):784–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabrita R, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577(7791):561–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maldonado L, et al. Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci Transl Med. 2014;6(221):221ra13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17(3):147–67.

    Article 
    PubMed 

    Google Scholar
     

  • Liu H, et al. Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy. Biomaterials. 2020;255: 120158.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39(1):38–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, et al. Choice of nanovaccine delivery mode has profound impacts on the intralymph node spatiotemporal distribution and immunotherapy efficacy. Adv Sci (Weinh). 2020;7(19):2001108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqui I, et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50(1):195–211.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jewell CM, Lopez SC, Irvine DJ. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci U S A. 2011;108(38):15745–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tagawa ST, et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer. 2003;98(1):144–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spaner DE, et al. Enhanced viral and tumor immunity with intranodal injection of canary pox viruses expressing the melanoma antigen, gp100. Cancer. 2006;106(4):890–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohanan D, et al. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release. 2010;147(3):342–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. J Control Release. 2017;267:47–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, De Koker S, De Geest BG. Engineering strategies for lymph node targeted immune activation. Acc Chem Res. 2020;53(10):2055–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. Nat Rev Mater. 2019;4(6):415–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, et al. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy. Nano Lett. 2019;19(7):4237–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer S, et al. HPMA-based nanocarriers for effective immune system stimulation. Macromol Biosci. 2019;19(6): e1800481.

    Article 
    PubMed 

    Google Scholar
     

  • Irvine DJ, et al. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura T, et al. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol Pharm. 2020;17(3):944–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Q, et al. Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses. J Control Release. 2015;200:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiss E, Bertoti I, Vargha-Butler EI. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films. J Colloid Interface Sci. 2002;245(1):91–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo M, et al. Synthetic nanovaccines for immunotherapy. J Control Release. 2017;263:200–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol. 2005;5(8):617–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niikura K, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, et al. Elastic nanovaccine enhances dendritic cell-mediated tumor immunotherapy. Small. 2022;18(32): e2201108.

    Article 
    PubMed 

    Google Scholar
     

  • Wculek SK, et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma R, Vyas SP. Mannose functionalized plain and endosomolytic nanocomposite(s)-based approach for the induction of effective antitumor immune response in C57BL/6 mice melanoma model. Drug Dev Ind Pharm. 2019;45(7):1089–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma R, et al. Release promoter-based systematically designed nanocomposite(s): a novel approach for site-specific delivery of tumor-associated antigen(s) (TAAs). Artif Cells Nanomed Biotechnol. 2018;46(sup2):776–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke X, et al. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev. 2019;151–152:72–93.

    Article 
    PubMed 

    Google Scholar
     

  • Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92(3):1005–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stylianopoulos T, et al. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J. 2010;99(5):1342–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong H, et al. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. Int J Nanomed. 2018;13:3353–65.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, et al. Endogenous/exogenous nanovaccines synergistically enhance dendritic cell-mediated tumor immunotherapy. Adv Healthc Mater. 2023;584: e2203028.

    Article 

    Google Scholar
     

  • Nishimoto Y, et al. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int J Pharm. 2020;576: 119021.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasut G, Veronese FM. Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci. 2007;32(8–9):933–61.

    Article 
    CAS 

    Google Scholar
     

  • Knop K, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl. 2010;49(36):6288–308.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stroh M, et al. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion. Nat Mater. 2004;3(7):489–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nance EA, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012;4(149): 149ra119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam J, et al. Modularly programmable nanoparticle vaccine based on polyethyleneimine for personalized cancer immunotherapy. Adv Sci (Weinh). 2021;8(5):2002577.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moghimi SM. The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes. Biomaterials. 2006;27(1):136–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao DA, et al. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J Pharm Sci. 2010;99(4):2018–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kourtis IC, et al. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS ONE. 2013;8(4): e61646.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy ST, et al. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006;112(1):26–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reddy ST, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25(10):1159–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release. 2014;193:241–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Melia MJ, et al. Quality of CD8(+) T cell immunity evoked in lymph nodes is compartmentalized by route of antigen transport and functional in tumor context. Sci Adv. 2020;6(50): eabd7134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33(1):64–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, et al. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010;31(3):438–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinde E, et al. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat Nanotechnol. 2017;12(1):81–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cha BG, Jeong JH, Kim J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent Sci. 2018;4(4):484–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia Y, et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat Mater. 2018;17(2):187–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song T, et al. Engineering the deformability of albumin-stabilized emulsions for lymph-node vaccine delivery. Adv Mater. 2021;33(26): e2100106.

    Article 
    PubMed 

    Google Scholar
     

  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur R, et al. Manipulation of the surface pegylation in combination with reduced vesicle size of cationic liposomal adjuvants modifies their clearance kinetics from the injection site, and the rate and type of T cell response. J Control Release. 2012;164(3):331–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang Y, et al. PEGylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J Control Release. 2012;159(1):135–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, et al. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020;11(1):1110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuai R, et al. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 2017;16(4):489–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oberli MA, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017;17(3):1326–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim M, et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci Adv. 2021;7(9): eabf4398.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maeta M, et al. Vitamin E scaffolds of pH-responsive lipid nanoparticles as DNA vaccines in cancer and protozoan infection. Mol Pharm. 2020;17(4):1237–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1):41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhardwaj P, et al. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater. 2020;108:1–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014;31(10):2563–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu XY, et al. The characteristics and transfection efficiency of cationic poly (ester-co-urethane) – short chain PEI conjugates self-assembled with DNA. Biomaterials. 2009;30(34):6665–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, et al. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nat Nanotechnol. 2020;15(12):1043–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Q, et al. Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials. 2017;122:105–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shae D, et al. Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to cancer vaccines. ACS Nano. 2020;14(8):9904–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv M, et al. Redox-responsive hyperbranched poly(amido amine) and polymer dots as a vaccine delivery system for cancer immunotherapy. J Mater Chem B. 2017;5(48):9532–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi GN, et al. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials. 2017;113:191–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3(2):203.

    CAS 

    Google Scholar
     

  • Wang X, et al. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev. 2021;50(15):8669–742.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today. 2019;27:73–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida JPM, et al. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small. 2015;11(12):1453–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao F, et al. Photothermally controlled MHC Class I Restricted CD8(+) T-cell responses elicited by hyaluronic acid decorated gold nanoparticles as a vaccine for cancer immunotherapy. Adv Healthc Mater. 2018;7(10): e1701439.

    Article 
    PubMed 

    Google Scholar
     

  • Guo Y, et al. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials. 2019;219: 119370.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassan HA, et al. Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials. 2016;104:310–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner J, et al. mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice. ACS Nano. 2021;15(3):4450–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, et al. Designing and engineering of nanocarriers for bioapplication in cancer immunotherapy. ACS Appl Bio Mater. 2020;3(12):8321–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li F, et al. Engineering magnetosomes for high-performance cancer vaccination. ACS Cent Sci. 2019;5(5):796–807.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, et al. SPIO enhance the cross-presentation and migration of DCs and anionic SPIO influence the nanoadjuvant effects related to interleukin-1beta. Nanoscale Res Lett. 2018;13(1):409.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, et al. Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators. Acc Chem Res. 2020;53(8):1545–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, et al. Preparation and application of mesoporous core-shell nanosilica using leucine derivative as template in effective drug delivery. Chin Chem Lett. 2020;31(5):1165–7.

    Article 
    CAS 

    Google Scholar
     

  • Chen L, et al. Simultaneous T cell activation and macrophage polarization to promote potent tumor suppression by iron oxide-embedded large-pore mesoporous organosilica core-shell nanospheres. Adv Healthc Mater. 2019;8(9): e1900039.

    Article 
    PubMed 

    Google Scholar
     

  • Hong X, et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci Adv. 2020;6(25): eaaz4462.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan H, et al. Application of carbon nanotubes in cancer vaccines: achievements, challenges and chances. J Control Release. 2019;297:79–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, et al. Efficient lymph node-targeted delivery of personalized cancer vaccines with reactive oxygen species-inducing reduced graphene oxide nanosheets. ACS Nano. 2020;14(10):13268–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng Z, Pu K. Improving cancer immunotherapy by cell membrane-camouflaged nanoparticles. Adv Funct Mater. 2020;30(43):2004397.

    Article 
    CAS 

    Google Scholar
     

  • Yang X, et al. pH-responsive biomimetic polymeric micelles as lymph node-targeting vaccines for enhanced antitumor immune responses. Biomacromol. 2020;21(7):2818–28.

    Article 
    CAS 

    Google Scholar
     

  • Liu WL, et al. Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nat Commun. 2019;10(1):3199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morishita M, et al. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials. 2016;111:55–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phung CD, et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater. 2020;115:371–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, et al. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials. 2020;255: 120208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo Y, et al. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano. 2015;9(7):6918–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forster R, Braun A, Worbs T. Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends Immunol. 2012;33(6):271–80.

    Article 
    PubMed 

    Google Scholar
     

  • Santos P, Almeida F. Exosome-based vaccines: history, current state, and clinical trials. Front Immunol. 2021;12: 711565.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harari A, et al. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov. 2020;19(9):635–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaput N, et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J Immunol. 2004;172(4):2137–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andre F, et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol. 2004;172(4):2126–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • d’Ischia M, et al. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc Chem Res. 2014;47(12):3541–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–115.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu G, et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun. 2017;8(1):1954.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee BR, et al. Engineered human ferritin nanoparticles for direct delivery of tumor antigens to lymph node and cancer immunotherapy. Sci Rep. 2016;6:35182.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat Commun. 2018;9(1):1532.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian Y, et al. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials. 2016;98:171–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu S, et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nat Mater. 2021;20(3):421–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei C, et al. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release. 2021;331:416–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang W, et al. In vivo irreversible albumin-binding near-infrared dye conjugate as a naked-eye and fluorescence dual-mode imaging agent for lymph node tumor metastasis diagnosis. Biomaterials. 2019;217: 119279.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdallah M, et al. Lymphatic targeting by albumin-hitchhiking: applications and optimisation. J Control Release. 2020;327:117–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507(7493):519–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudra JS, et al. A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A. 2010;107(2):622–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdullah T, et al. Supramolecular self-assembled peptide-based vaccines: current state and future perspectives. Front Chem. 2020;8: 598160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veneziano R, et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat Nanotechnol. 2020;15(8):716–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu G, et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy. Nat Commun. 2017;8(1):1482.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi S, et al. The bright future of nanotechnology in lymphatic system imaging and imaging-guided surgery. J Nanobiotechnol. 2022;20(1):24.

    Article 

    Google Scholar
     

  • Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suhail Y, et al. Systems biology of cancer metastasis. Cell Syst. 2019;9(2):109–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moncayo VM, et al. Sentinel lymph node biopsy procedures. Semin Nucl Med. 2017;47(6):595–617.

    Article 
    PubMed 

    Google Scholar
     

  • Bieniasz-Krzywiec P, et al. Podoplanin-expressing macrophages promote lymphangiogenesis and lymphoinvasion in breast cancer. Cell Metab. 2019;30(5):917–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halabi WJ, et al. Ureteral injuries in colorectal surgery: an analysis of trends, outcomes, and risk factors over a 10-year period in the United States. Dis Colon Rectum. 2014;57(2):179–86.

    Article 
    PubMed 

    Google Scholar
     

  • Frankman EA, et al. Lower urinary tract injury in women in the United States, 1979–2006. Am J Obstet Gynecol. 2010;202(5):495.

    Article 
    PubMed Central 

    Google Scholar
     

  • Wei Z, et al. Peroxidase-mimicking evodiamine/indocyanine green nanoliposomes for multimodal imaging-guided theranostics for oral squamous cell carcinoma. Bioact Mater. 2021;6(7):2144–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, et al. Image-guided dendritic cell-based vaccine immunotherapy in murine carcinoma models. Am J Transl Res. 2017;9(10):4564–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Modo M, Hoehn M, Bulte JW. Cellular MR imaging. Mol Imaging. 2005;4(3):143–64.

    Article 
    PubMed 

    Google Scholar
     

  • Pan D, et al. Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles. ACS Nano. 2012;6(2):1260–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong G, Antaris AL, Dai H. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1(0010):1–22.

    Article 

    Google Scholar
     

  • Fan X, et al. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv Sci (Weinh). 2021;8(9):2003972.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Z, et al. Thrombus-targeted nano-agents for NIR-II diagnostic fluorescence imaging-guided flap thromboembolism multi-model therapy. J Nanobiotechnol. 2022;20(1):447.

    Article 

    Google Scholar
     

  • Cai Y, et al. Fused-ring small-molecule-based bathochromic nano-agents for tumor NIR-II fluorescence imaging-guided photothermal/photodynamic therapy. ACS Appl Bio Mater. 2021;4(2):1942–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai Y, et al. Metastatic status of sentinel lymph nodes in breast cancer determined with photoacoustic microscopy via dual-targeting nanoparticles. Light Sci Appl. 2020;9:164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, et al. pH-amplified CRET nanoparticles for in vivo imaging of tumor metastatic lymph nodes. Angew Chem Int Ed Engl. 2021;60(26):14512–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong L, Shuhendler AJ, Rao J. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun. 2012;3:1193.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang C, et al. Near-infrared upconversion multimodal nanoparticles for targeted radionuclide therapy of breast cancer lymphatic metastases. Front Immunol. 2022;13:1063678.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao D, et al. Specific diagnosis of lymph node micrometastasis in breast cancer by targeting activatable near-infrared fluorescence imaging. Biomaterials. 2022;282: 121388.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat Nanotechnol. 2022;17(6):653–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aime S, et al. Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl. 2005;44(12):1813–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Vries IJ, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23(11):1407–13.

    Article 
    PubMed 

    Google Scholar
     

  • Go Y, et al. Tumor-associated macrophages extend along lymphatic flow in the pre-metastatic lymph nodes of human gastric cancer. Ann Surg Oncol. 2016;23(Suppl 2):S230–5.

    Article 
    PubMed 

    Google Scholar
     

  • Lu Y, et al. A therapeutic DC vaccine with maintained immunological activity exhibits robust anti-tumor efficacy. J Control Release. 2022;349:254–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrin J, et al. Cell tracking in cancer immunotherapy. Front Med (Lausanne). 2020;7:34.

    Article 
    PubMed 

    Google Scholar
     

  • Kang SW, et al. Cell labeling and tracking method without distorted signals by phagocytosis of macrophages. Theranostics. 2014;4(4):420–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jendelova P, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res. 2004;76(2):232–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoehn M, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A. 2002;99(25):16267–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crich SG, et al. Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med. 2004;51(5):938–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian R, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater. 2020;32(11): e1907365.

    Article 
    PubMed 

    Google Scholar
     

  • Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol. 2011;8(11):677–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17(7):484–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stephan MT, et al. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med. 2010;16(9):1035–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng. 2007;9:229–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolas JF, Guy B. Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. Expert Rev Vaccines. 2008;7(8):1201–14.

    Article 
    PubMed 

    Google Scholar