Nanotechnology

Precise electrokinetic position and three-dimensional orientation control of a nanowire bioprobe in solution


  • Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8, 531–554 (2013).

    CAS 

    Google Scholar
     

  • Palagi, S. & Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 3, 113–124 (2018).

    CAS 

    Google Scholar
     

  • Li, J., Esteban-Fernández de Ávila, B., Gao, W., Zhang, L. & Wang, J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

  • Joh, H. & Fan, D. E. Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: review and perspective. Adv. Mater. 33, 2101965 (2021).

    CAS 

    Google Scholar
     

  • Kim, K., Guo, J., Liang, Z. & Fan, D. Artificial micro/nanomachines for bioapplications: biochemical delivery and diagnostic sensing. Adv. Funct. Mater. 28, 1705867 (2018).


    Google Scholar
     

  • Ru, C., Luo, J., Xie, S. & Sun, Y. A review of non-contact micro- and nano-printing technologies. J. Micromech. Microeng. 24, 053001 (2014).


    Google Scholar
     

  • Dholakia, K., Drinkwater, B. W. & Ritsch-Marte, M. Comparing acoustic and optical forces for biomedical research. Nat. Rev. Phys. 2, 480–491 (2020).


    Google Scholar
     

  • Liao, P.-H., Tseng, C.-Y., Ke, Z.-Y., Hsieh, C.-L. & Kong, K. V. Operando characterization of chemical reactions in single living cells using SERS. Chem. Commun. 56, 4852–4855 (2020).

    CAS 

    Google Scholar
     

  • Zhao, X. et al. Surface-enhanced Raman scattering optophysiology nanofibers for the detection of heavy metals in single breast cancer cells. ACS Sens. 6, 1649–1662 (2021).

    CAS 

    Google Scholar
     

  • Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    CAS 

    Google Scholar
     

  • Ghosh, S. & Ghosh, A. All optical dynamic nanomanipulation with active colloidal tweezers. Nat. Commun. 10, 4191 (2019).


    Google Scholar
     

  • Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Phys. Rev. E 59, 3676–3681 (1999).

    CAS 

    Google Scholar
     

  • Huang, Y. et al. Three-axis rapid steering of optically propelled micro/nanoparticles. Rev. Sci. Instrum. 80, 063107 (2009).


    Google Scholar
     

  • Bingelyte, V., Leach, J., Courtial, J. & Padgett, M. J. Optically controlled three-dimensional rotation of microscopic objects. Appl. Phys. Lett. 82, 829–831 (2003).

    CAS 

    Google Scholar
     

  • Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    CAS 

    Google Scholar
     

  • Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009).

    CAS 

    Google Scholar
     

  • Zhang, L. et al. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009).


    Google Scholar
     

  • Kummer, M. P. et al. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Rob. 26, 1006–1017 (2010).


    Google Scholar
     

  • Zhang, Z., Huang, Y. & Menq, C. H. Actively controlled manipulation of a magnetic microbead using quadrupole magnetic tweezers. IEEE Trans. Rob. 26, 531–541 (2010).


    Google Scholar
     

  • Ghosh, S. & Ghosh, A. Mobile nanotweezers for active colloidal manipulation. Sci. Robot. 3, eaaq0076 (2018).


    Google Scholar
     

  • Tanyeri, M., Johnson-Chavarria, E. M. & Schroeder, C. M. Hydrodynamic trap for single particles and cells. Appl. Phys. Lett. 96, 224101–224101 (2010).


    Google Scholar
     

  • Kumar, D., Shenoy, A., Li, S. & Schroeder, C. M. Orientation control and nonlinear trajectory tracking of colloidal particles using microfluidics. Phys. Rev. Fluids 4, 114203 (2019).


    Google Scholar
     

  • Ropp, C. et al. Fabrication of nanoassemblies using flow control. Nano Lett. 13, 3936–3941 (2013).

    CAS 

    Google Scholar
     

  • Mathai, P. P., Carmichael, P. T., Shapiro, B. A. & Liddle, J. A. Simultaneous positioning and orientation of single nano-wires using flow control. RSC Adv. 3, 2677–2682 (2013).

    CAS 

    Google Scholar
     

  • Ding, X. et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl Acad. Sci. USA 109, 11105–11109 (2012).

    CAS 

    Google Scholar
     

  • Cao, H. X. et al. Holographic acoustic tweezers for 5-DoF manipulation of nanocarrier clusters toward targeted drug delivery. Pharmaceutics 14, 1490 (2022).


    Google Scholar
     

  • Braun, M. & Cichos, F. Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 7, 11200–11208 (2013).

    CAS 

    Google Scholar
     

  • Chen, Y. et al. Carbon helical nanorobots capable of cell membrane penetration for single cell targeted SERS bio-sensing and photothermal cancer therapy. Adv. Funct. Mater. 32, 2200600 (2022).

    CAS 

    Google Scholar
     

  • Ando, J., Fujita, K., Smith, N. I. & Kawata, S. Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett. 11, 5344–5348 (2011).

    CAS 

    Google Scholar
     

  • Fennimore, A. M. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

    CAS 

    Google Scholar
     

  • Fan, D. L., Zhu, F. Q., Cammarata, R. C. & Chien, C. L. Manipulation of nanowires in suspension by a.c. electric fields. Appl. Phys. Lett. 85, 4175–4177 (2004).

    CAS 

    Google Scholar
     

  • Chang, S. T., Paunov, V. N., Petsev, D. N. & Velev, O. D. Remotely powered self-propelling particles and micropumps based on miniature diodes. Nat. Mater. 6, 235–240 (2007).

    CAS 

    Google Scholar
     

  • Edwards, B., Engheta, N. & Evoy, S. Electric tweezers: experimental study of positive dielectrophoresis-based positioning and orientation of a nanorod. J. Appl. Phys. 102, 024913 (2007).


    Google Scholar
     

  • Fan, D. L., Cammarata, R. C. & Chien, C. L. Precision transport and assembling of nanowires in suspension by electric fields. Appl. Phys. Lett. 92, 093115 (2008).


    Google Scholar
     

  • Boymelgreen, A. M., Balli, T., Miloh, T. & Yossifon, G. Active colloids as mobile microelectrodes for unified label-free selective cargo transport. Nat. Commun. 9, 760 (2018).


    Google Scholar
     

  • Fields Alexander, P. & Cohen Adam, E. Electrokinetic trapping at the one nanometer limit. Proc. Natl Acad. Sci. USA 108, 8937–8942 (2011).

    CAS 

    Google Scholar
     

  • Cohen, A. E. Control of nanoparticles with arbitrary two-dimensional force fields. Phys. Rev. Lett. 94, 118102 (2005).


    Google Scholar
     

  • Galajda, P. & Ormos, P. Orientation of flat particles in optical tweezers by linearly polarized light. Opt. Express 11, 446–451 (2003).


    Google Scholar
     

  • Sachs, J., Günther, J.-P., Mark, A. G. & Fischer, P. Chiroptical spectroscopy of a freely diffusing single nanoparticle. Nat. Commun. 11, 4513 (2020).

    CAS 

    Google Scholar
     

  • Jones, T. B. Electromechanics of Particles (Cambridge Univ. Press, 1995).

  • Kim, K., Xu, X., Guo, J. & Fan, D. L. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 5, 3632 (2014).


    Google Scholar
     

  • Masliyah, J. H. & Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena (John Wiley & Sons, 2006).

  • Liang, Z. & Fan, D. Visible light–gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv. 4, eaau0981 (2018).


    Google Scholar
     

  • Liang, Z., Teal, D. & Fan, D. Light programmable micro/nanomotors with optically tunable in-phase electric polarization. Nat. Commun. 10, 5275 (2019).


    Google Scholar
     

  • Guo, J., Gallegos, J. J., Tom, A. R. & Fan, D. Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 12, 1179–1187 (2018).

    CAS 

    Google Scholar
     

  • Earnshaw, S. On the nature of molecular forces which regulate the constitution of luminiferous ether. Trans. Cambridge Philos. Soc. 7, 97 (1842).


    Google Scholar
     

  • Han, Y. et al. Brownian motion of an ellipsoid. Science 314, 626–630 (2006).

    CAS 

    Google Scholar
     

  • Broersma, S. Rotational diffusion constant of a cylindrical particle. J. Chem. Phys. 32, 1626–1631 (1960).

    CAS 

    Google Scholar
     

  • Maier, C. M. et al. Optical and thermophoretic control of Janus nanopen injection into living cells. Nano Lett. 18, 7935–7941 (2018).

    CAS 

    Google Scholar
     

  • Xu, X., Kim, K., Li, H. & Fan, D. L. Ordered arrays of Raman nanosensors for ultrasensitive and location predictable biochemical detection. Adv. Mater. 24, 5457–5463 (2012).

    CAS 

    Google Scholar
     

  • Xu, X., Kim, K. & Fan, D. Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angew. Chem. Int. Ed. 54, 2525–2529 (2015).

    CAS 

    Google Scholar
     

  • Cooper, S. The constrained hoop: an explanation of the overshoot in cell length during a shift-up of Escherichia coli. J. Bacteriol. 171, 5239–5243 (1989).

    CAS 

    Google Scholar
     

  • Fan, D. et al. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat. Nanotechnol. 5, 545–551 (2010).

    CAS 

    Google Scholar
     

  • Premasiri, W. R. et al. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal. Bioanal. Chem. 408, 4631–4647 (2016).

    CAS 

    Google Scholar
     

  • Xu, X. et al. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv. Funct. Mater. 23, 4332–4338 (2013).

    CAS 

    Google Scholar
     

  • Walker, D., Singh, D. P. & Fischer, P. Capture of 2D microparticle arrays via a UV-triggered thiol-yne ‘click’ reaction. Adv. Mater. 28, 9846–9850 (2016).

    CAS 

    Google Scholar