Nanotechnology

Recent advance in phytonanomedicine and mineral nanomedicine delivery system of the treatment for acute myeloid leukemia | Journal of Nanobiotechnology


  • Juliusson G, Hough R. Leukemia. Prog Tumor Res. 2016;43:87–100.

    Article 
    PubMed 

    Google Scholar
     

  • Kropp EM, Li Q. Mechanisms of resistance to targeted therapies for relapsed or refractory acute myeloid leukemia. Exp Hematol. 2022;111:13–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Liu Y, Wang L, Lin S, Dai X, Yan H, Ge Z, Ren Q, Wang H, Zhu F, Wang S. Traditional chinese medicine against COVID-19: role of the gut microbiota. Biomed Pharmacother. 2022;149:112787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai B, Zeng Y, Zeng Z, Zhang N, Li C, Zeng Y, You Y, Wang S, Chen X, Sui X, Xie T. Drug delivery systems for elemene, its main active ingredient beta-elemene, and its derivatives in cancer therapy. Int J Nanomedicine. 2018;13:6279–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol. 2021;10:39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tzogani K, Penttila K, Lapvetelainen T, Hemmings R, Koenig J, Freire J, Marcia S, Cole S, Coppola P, Flores B, et al. EMA Review of Daunorubicin and Cytarabine Encapsulated in Liposomes (Vyxeos, CPX-351) for the treatment of adults with newly diagnosed, therapy-related Acute myeloid leukemia or Acute myeloid leukemia with myelodysplasia-related changes. Oncologist. 2020;25:e1414–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ci T, Zhang W, Qiao Y, Li H, Zang J, Li H, Feng N, Gu Z. Delivery strategies in treatments of leukemia. Chem Soc Rev. 2022;51:2121–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Cancer Res Ther. 2014;10:853–8.

    Article 
    PubMed 

    Google Scholar
     

  • De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6:e441.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392:593–606.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benjamin RS, Wiernik PH, Bachur NR. Adriamycin. Ann Intern Med. 1974;81:414–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs. 2010;8:2619–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khokhlatchev AV, Sharma A, Deering TG, Shaw JJP, Costa-Pinheiro P, Golla U, Annageldiyev C, Cabot MC, Conaway MR, Tan SF, et al. Ceramide nanoliposomes augment the efficacy of venetoclax and cytarabine in models of acute myeloid leukemia. FASEB J. 2022;36:e22514.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dinner SN, Giles FJ, Altman JK. New strategies for relapsed acute myeloid leukemia: fertile ground for translational research. Curr Opin Hematol. 2014;21:79–86.

    Article 
    PubMed 

    Google Scholar
     

  • Rai KR, Holland JF, Glidewell OJ, Weinberg V, Brunner K, Obrecht JP, Preisler HD, Nawabi IW, Prager D, Carey RW, et al. Treatment of acute myelocytic leukemia: a study by cancer and leukemia group B. Blood. 1981;58:1203–12.

  • Baker WJ, Royer GL, Weiss RB. Cytarabine and neurologic toxicity. J Clin Oncol. 1991;9:679–93.

  • Tamamyan G, Kadia T, Ravandi F, Borthakur G, Cortes J, Jabbour E, Daver N, Ohanian M, Kantarjian H, Konopleva M. Frontline treatment of acute myeloid leukemia in adults. Crit Rev Oncol Hematol. 2017;110:20–34.

  • Dong T, Wu N, Gao H, Liang S, Dong X, Zhao T, Jiang Q, Liu J. CD277 agonist enhances the immunogenicity of relapsed/refractory acute myeloid leukemia towards Vdelta2(+) T cell cytotoxicity. Ann Hematol. 2022;101:2195–208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almatani MF, Ali A, Onyemaechi S, Zhao Y, Gutierrez L, Vaikari VP, Alachkar H. Strategies targeting FLT3 beyond the kinase inhibitors. Pharmacol Ther. 2021;225:107844.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enioutina EY, Salis ER, Job KM, Gubarev MI, Krepkova LV, Sherwin CM. Herbal Medicines: challenges in the modern world. Part 5. Status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev Clin Pharmacol. 2017;10:327–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Liu X, Ho RL, Lam CW, Chow MS. Precision or Personalized Medicine for Cancer Chemotherapy: is there a role for Herbal Medicine. Molecules 2016, 21.

  • Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev. 2020;154–155:245–73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gezici S, Sekeroglu N. Current perspectives in the application of Medicinal plants against Cancer: Novel Therapeutic Agents. Anticancer Agents Med Chem. 2019;19:101–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swindell EP, Hankins PL, Chen H, Miodragovic DU, O’Halloran TV. Anticancer activity of small-molecule and nanoparticulate arsenic(III) complexes. Inorg Chem. 2013;52:12292–304.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89:3354–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvakesavan RK, Franklin G. Prospective application of Nanoparticles Green Synthesized using Medicinal Plant extracts as Novel Nanomedicines. Nanotechnol Sci Appl. 2021;14:179–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Hong G, Liu Z, Yang D, Kankala RK, Wu W. Synergistic antitumor efficacy of doxorubicin and gambogic acid-encapsulated albumin nanocomposites. Colloids Surf B Biointerfaces. 2020;196:111286.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Wong YK, Liao F. What has traditional chinese medicine delivered for modern medicine? Expert Rev Mol Med. 2018;20:e4.

    Article 
    PubMed 

    Google Scholar
     

  • Du M, Ouyang Y, Meng F, Ma Q, Liu H, Zhuang Y, Pang M, Cai T, Cai Y. Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomed (Lond). 2019;14:1771–86.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Hong G, Liu Z, Yang D, Kankala RK, Wu W. Synergistic antitumor efficacy of doxorubicin and gambogic acid-encapsulated albumin nanocomposites. Colloids Surf B. 2020;196:111286.

    Article 
    CAS 

    Google Scholar
     

  • Wilson B, Mukundan Geetha K. Nanomedicine to deliver biological macromolecules for treating COVID-19. Vaccine. 2022;40:3931–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohapatra P, Singh P, Sahoo SK. Phytonanomedicine: a novel avenue to treat recurrent cancer by targeting cancer stem cells. Drug Discov Today. 2020;25:1307–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mago A, Junaid Tahir M, Arslan Khan M, Abbasher Hussien Mohamed Ahmed K, Usman Munir M. Nanomedicine: Advancement in healthcare. Ann Med Surg (Lond). 2022;79:104078.

    PubMed 

    Google Scholar
     

  • Junghanns JU, Muller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3:295–309.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarvis M, Krishnan V, Mitragotri S. Nanocrystals: a perspective on translational research and clinical studies. Bioeng Transl Med. 2019;4:5–16.

    Article 
    PubMed 

    Google Scholar
     

  • Hanqing Y. Study on antitumor mechanism of nano-realgar. Huazhong University of Science and Technology; 2005.

  • Wu G-c, Zhang M, Wang Y-q, Mothibe KJ, Chen W. -x: production of silver carp bone powder using superfine grinding technology: suitable production parameters and its properties. J Food Eng. 2012;109:730–5.

    Article 

    Google Scholar
     

  • Chuan W. Preparation of Realgar Aqueous dispersion formulation and study on antitumor efficacy. Beijing: Peking Union Medical College. 2017.

  • Dinshaw IJ, Ahmad N, Salim N, Leo BF. Nanoemulsions: A Review on the Conceptualization of Treatment for Psoriasis Using a ‘Green’ Surfactant with Low-Energy Emulsification Method. Pharmaceutics. 2021;13(7):1024.

  • Liu L, Qi XJ, Zhong ZK, Zhang EN. Nanomedicine-based combination of gambogic acid and retinoic acid chlorochalcone for enhanced anticancer efficacy in osteosarcoma. Biomed Pharmacother. 2016;83:79–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Q, Wang C, Li X, Guo H, Meng J, Liu J, Xu H. Fabrication of water-soluble polymer-encapsulated As4S4 to increase oral bioavailability and chemotherapeutic efficacy in AML mice. Sci Rep. 2016;6:29348.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang T, Zhang X, Jia M, Yang A, Liu J, Wen T, Meng J, Xu H. Hydrophilic realgar nanocrystals prolong the survival of Refractory Acute myeloid leukemia mice through inducing Multi-Lineage differentiation and apoptosis. Int J Nanomedicine. 2022;17:2191–202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Z, Wang Z, Yang Y, Du Y, Cui S, Zhang Y, Tong Y, Song Z, Zeng H, Zou Q, et al. Development of a safety and efficacy nanoemulsion delivery system encapsulated gambogic acid for acute myeloid leukemia in vitro and in vivo. Eur J Pharm Sci. 2018;125:172–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Yang L, Shen R, Gong L, Tian Z, Qiu H, Shi Z, Gao L, Sun H, Zhang G. Self-nanoemulsifying system improves oral absorption and enhances anti-acute myeloid leukemia activity of berberine. J Nanobiotechnol. 2018;16:76.

    Article 
    CAS 

    Google Scholar
     

  • Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release. 2014;183:51–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu HY, Liu CS, Huang CL, Chen L, Zheng YR, Huang SH, Long XY. Nanoemulsion improves hypoglycemic efficacy of berberine by overcoming its gastrointestinal challenge. Colloids Surf B Biointerfaces. 2019;181:927–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Lin H, Huang F, Xie Y, Wong KH, Chen X, Wu D, Lu A, Yang Z. Targeting approaches of Nanomedicines in Acute myeloid leukemia. Dose Response. 2019;17:1559325819887048.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houshmand M, Garello F, Circosta P, Stefania R, Aime S, Saglio G, Giachino C. Nanocarriers as magic bullets in the treatment of Leukemia. Nanomaterials (Basel). 2020;10(2):276.

  • Ahmad Z, Shah A, Siddiq M, Kraatz HB. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4:17028–38.

    Article 
    CAS 

    Google Scholar
     

  • Bottger R, Pauli G, Chao PH, Al Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev. 2020;154–155:79–101.

    Article 
    PubMed 

    Google Scholar
     

  • Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B. 2021;11:871–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei Z, Wu Q, Hu S, Li X, Yang X. Triptolide loaded solid lipid nanoparticle hydrogel for topical application. Drug Dev Ind Pharm. 2005;31:161–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong X, Ma N, Liu M, Liu Z. Effects of As(2)O(3) nanoparticles on cell growth and apoptosis of NB4 cells. Exp Ther Med. 2015;10:1271–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M, Xiong F, Ma L, Yao H, Wang Q, Wen L, Wang Q, Gu N, Chen S. Inhibitory effect of magnetic Fe(3)O(4) nanoparticles coloaded with homoharringtonine on human leukemia cells in vivo and in vitro. Int J Nanomedicine. 2016;11:4413–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomed (Lond). 2013;8:1509–28.

    Article 
    CAS 

    Google Scholar
     

  • Chung JW, Guo Y, Priestley RD, Kwak SY. Colloidal gold nanoparticle formation derived from self-assembled supramolecular structure of cyclodextrin/Au salt complex. Nanoscale. 2011;3:1766–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang R, Xu Z, Wang Z. Advances in Nanoliposomes for the diagnosis and treatment of Liver Cancer. Int J Nanomedicine. 2022;17:909–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, MacDonald RC, Li S, Krett NL, Rosen ST, O’Halloran TV. Lipid encapsulation of arsenic trioxide attenuates cytotoxicity and allows for controlled anticancer drug release. J Am Chem Soc. 2006;128:13348–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darwish NHE, Sudha T, Godugu K, Bharali DJ, Elbaz O, El-Ghaffar HAA, Azmy E, Anber N, Mousa SA. Novel targeted Nano-Parthenolide molecule against NF-kB in Acute myeloid leukemia. Molecules 2019, 24.

  • Khosravani F, Mir H, Mirzaei A, Kobarfard F, Bardania H, Hosseini E. Arsenic trioxide and Erlotinib loaded in RGD-modified nanoliposomes for targeted combination delivery to PC3 and PANC-1 cell lines. Biotechnol Appl Biochem. 2022;70(2):811–823.

  • Barth BM, Wang W, Toran PT, Fox TE, Annageldiyev C, Ondrasik RM, Keasey NR, Brown TJ, Devine VG, Sullivan EC, et al. Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloid leukemia. Blood Adv. 2019;3:2598–603.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: types, properties and applications in drug delivery. IET Nanobiotechnol. 2021;15:19–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trinh HM, Cholkar MJK, Mitra R. A.K. Mitra,: Nanomicelles in diagnosis and drug delivery. Emerg Nanotechnologies Diagnostics Drug Delivery Med Devices. 2017:45–8.

  • Ghosh B, Biswas S. Polymeric micelles in cancer therapy: state of the art. J Control Release. 2021;332:127–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantu L, Nicoli S. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tima S, Anuchapreeda S, Ampasavate C, Berkland C, Okonogi S. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells. Eur J Pharm Biopharm. 2017;114:57–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trinh HM, Joseph M, Cholkar K, Mitra R, Mitra AK. Nanomicelles in Diagnosis and Drug Delivery. 2017:45–58.

  • Dahan A, Beig A, Lindley D, Miller JM. The solubility-permeability interplay and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev. 2016;101:99–107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murakami T. Absorption sites of orally administered drugs in the small intestine. Expert Opin Drug Discov. 2017;12:1219–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tima S, Ichikawa H, Ampasavate C, Okonogi S, Anuchapreeda S. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line. J Nat Prod. 2014;77:948–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stuurman FE, Nuijen B, Beijnen JH, Schellens JH. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet. 2013;52:399–414.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baranello MP, Bauer L, Jordan CT, Benoit DSW. Micelle Delivery of Parthenolide to Acute myeloid leukemia cells. Cell Mol Bioeng. 2015;8:455–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudha T, Bharali DJ, Yalcin M, Darwish NH, Coskun MD, Keating KA, Lin HY, Davis PJ, Mousa SA. Targeted delivery of cisplatin to tumor xenografts via the nanoparticle component of nano-diamino-tetrac. Nanomed (Lond). 2017;12:195–205.

    Article 
    CAS 

    Google Scholar
     

  • Bonifacio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1–15.

    PubMed 

    Google Scholar
     

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16.

  • Fan L, Liu C, Hu A, Liang J, Li F, Xiong Y, Mu CF. Dual oligopeptides modification mediates arsenic trioxide containing nanoparticles to eliminate primitive chronic myeloid leukemia cells inside bone marrow niches. Int J Pharm. 2020;579:119179.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Wang L, Li L, Wang A, Huang T, Hu J, Zhao M, Liu F, Qi S, Hu C, et al. Network-based analysis with primary cells reveals drug response landscape of acute myeloid leukemia. Exp Cell Res. 2020;393:112054.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balasundaram N, Ganesan S, Chendamarai E, Palani HK, Venkatraman A, Alex AA, David S, Kumar SP, Radhakrishnan NR, Yasar M, et al. Metabolic adaptation drives arsenic trioxide resistance in acute promyelocytic leukemia. Blood Adv. 2022;6:652–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giri B, Gupta VK, Yaffe B, Modi S, Roy P, Sethi V, Lavania SP, Vickers SM, Dudeja V, Banerjee S, et al. Pre-clinical evaluation of Minnelide as a therapy for acute myeloid leukemia. J Transl Med. 2019;17:163.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia G, Jiang X, Li Z, Ding X, Lei L, Xu S, Gao N. Decoding the mechanism of Shen Qi Sha Bai Decoction in treating Acute myeloid leukemia based on Network Pharmacology and Molecular Docking. Front Cell Dev Biol. 2021;9:796757.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lian Y, Wang X, Guo P, Li Y, Raza F, Su J, Qiu M. Erythrocyte membrane-coated Arsenic Trioxide-Loaded Sodium Alginate Nanoparticles for Tumor Therapy. Pharmaceutics 2019, 12.

  • Peng Y, Zhao Z, Liu T, Li X, Hu X, Wei X, Zhang X, Tan W. Smart Human-Serum-Albumin-As(2) O(3) Nanodrug with Self-Amplified Folate receptor-targeting ability for chronic myeloid leukemia treatment. Angew Chem Int Ed Engl. 2017;56:10845–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su C, Liu Y, He Y, Gu J. Analytical methods for investigating in vivo fate of nanoliposomes: a review. J Pharm Anal. 2018;8:219–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YJ, Hu XB, Lu XL, Liao DH, Tang TT, Wu JY, Xiang DX. Nanoemulsion-based delivery system for enhanced oral bioavailability and caco-2 cell monolayers permeability of berberine hydrochloride. Drug Deliv. 2017;24:1868–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017;12:8211–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo D, Wu C, Song W, Jiang H, Wang X, Chen B. Effect of colloidal gold nanoparticles on cell interface and their enhanced intracellular uptake of arsenic trioxide in leukemia cancer cells. J Nanosci Nanotechnol. 2009;9:4611–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silverman JA, Reynolds L, Deitcher SR. Pharmacokinetics and pharmacodynamics of vincristine sulfate liposome injection (VSLI) in adults with acute lymphoblastic leukemia. J Clin Pharmacol. 2013;53:1139–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Finlayson M. Modulation of CD44 activity by A6-Peptide. Front Immunol. 2015;6:135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu W, Liu T, Fan D, Zhang J, Xia Y, Meng F, Xu Y, Cornelissen J, Liu Z, Zhong Z. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44 + acute myeloid leukemia. J Control Release. 2021;329:706–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Chen H, Huang X, Xu H, Li Y, Yuan H, Yu J, Gao Y. Single-cell transcriptomics profiling the compatibility mechanism of as(2)O(3)-indigo naturalis formula based on bone marrow stroma cells. Biomed Pharmacother. 2022;151:113182.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pi K, Markelova E, Zhang P, Van Cappellen P. Arsenic oxidation by Flavin-Derived reactive species under oxic and anoxic conditions: oxidant formation and pH dependence. Environ Sci Technol. 2019;53:10897–905.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan J, He Q, Wang Z, Huang W, Cai Z. Self-assembled Nanocomplex for Co-Delivery of Arsenic-Retinoic Acid Prodrug into Acute promyelocytic leukemia cells. J Biomed Nanotechnol. 2018;14:1052–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Meng H. Consideration for the scale-up manufacture of nanotherapeutics—A critical step for technology transfer. View. 2021;2:20200190.

  • Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15:1527–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation. Drug Deliv Transl Res. 2020;10:721–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: current and future perspectives. Biomaterials Sci. 2020;8:4653–64.

    Article 
    CAS 

    Google Scholar
     

  • Zheng C, Li M, Ding J. Challenges and Opportunities of Nanomedicines in clinical translation. BIO Integr. 2021;2:57–60.

    Article 

    Google Scholar
     

  • Nirachonkul W, Ogonoki S, Thumvijit T, Chiampanichayakul S, Panyajai P, Anuchapreeda S, Tima S, Chiampanichayakul S. CD123-Targeted Nano-Curcumin Molecule enhances cytotoxic efficacy in leukemic stem cells. Nanomaterials (Basel). 2021;11(11):2974.

  • Zong H, Sen S, Zhang G, Mu C, Albayati ZF, Gorenstein DG, Liu X, Ferrari M, Crooks PA, Roboz GJ, et al. In vivo targeting of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche. Leukemia. 2016;30:1582–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan W, Li Y, Chen M, Wang Y. Berberine hydrochloride: anticancer activity and nanoparticulate delivery system. Int J Nanomedicine. 2011;6:1773–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen B, Liang Y, Wu W, Cheng J, Xia G, Gao F, Ding J, Gao C, Shao Z, Li G, et al. Synergistic effect of magnetic nanoparticles of Fe(3)O(4) with gambogic acid on apoptosis of K562 leukemia cells. Int J Nanomedicine. 2009;4:251–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang K, Lin H, Mao J, Luo X, Wei R, Su Z, Zhou B, Li D, Gao J, Shan H. An extracellular pH-driven targeted multifunctional manganese arsenite delivery system for tumor imaging and therapy. Biomater Sci. 2019;7:2480–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen M, Qiao Y, Cao J, Ta L, Ci T, Ke X. Biomimetic doxorubicin/ginsenoside co-loading nanosystem for chemoimmunotherapy of acute myeloid leukemia. J Nanobiotechnol. 2022;20:273.

    Article 

    Google Scholar
     

  • Liang YQ, Chen BA, Wu WW, Gao F, Xia GH, Shao ZY, et al. Effects of magnetic nanoparticle of Fe3O4 on apoptosis induced by gambogic acid in U937 leukemia cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010;18:67–73.

    PubMed 

    Google Scholar