Nanotechnology

The influence of protein corona on Graphene Oxide: implications for biomedical theranostics | Journal of Nanobiotechnology


  • Ouyang J, et al. 2D materials-based nanomedicine: from discovery to applications. Adv Drug Deliv Rev. 2022. https://doi.org/10.1016/j.addr.2022.114268.

    Article 
    PubMed 

    Google Scholar
     

  • Kamat PV. Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett. 2010;1(2):520–7.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, et al. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Controlled Release. 2018;286:64–73.

    Article 
    CAS 

    Google Scholar
     

  • Palmieri V, Spirito MD, Papi M. Graphene-based scaffolds for tissue engineering and photothermal therapy. Nanomedicine. 2020;15(14):1411–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao J, et al. Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine. Microchim Acta. 2019;186:1–25.

    Article 

    Google Scholar
     

  • Coreas R, et al. Biological impacts of reduced graphene oxide affected by protein corona formation. Chem Res Toxicol. 2022;35(7):1244–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma H, Mondal S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int J Mol Sci. 2020;21(17):6280.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabish TA. Graphene-based materials: the missing piece in nanomedicine? Biochem Biophys Res Commun. 2018;504(4):686–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, et al. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29(5):205–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng L, et al. Polyethylene glycol and polyethylenimine dual-functionalized nano‐graphene oxide for photothermally enhanced gene delivery. Small. 2013;9(11):1989–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Y, et al. Lab-on-graphene: graphene oxide as a triple-channel sensing device for protein discrimination. Chem Commun. 2013;49(1):81–3.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, et al. Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res Lett. 2020;15:1–11.

    Article 

    Google Scholar
     

  • Craciun BF, et al. Synergistic effect of low molecular weight polyethylenimine and polyethylene glycol components in dynamic nonviral vector structure, toxicity, and transfection efficiency. Molecules. 2019;24(8):1460.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin C, et al. Application of nanotechnology in cancer diagnosis and therapy-a mini-review. Int J Med Sci. 2020;17(18):2964.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Santo R, et al. Machine learning-assisted FTIR analysis of circulating extracellular vesicles for cancer liquid biopsy. J Personalized Med. 2022;12(6):949.

    Article 

    Google Scholar
     

  • Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35(3):257–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quagliarini E, et al. A decade of the liposome-protein corona: Lessons learned and future breakthroughs in theranostics. Nano Today. 2022;47:101657.

    Article 
    CAS 

    Google Scholar
     

  • Giulimondi F, et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat Commun. 2019;10(1):3686.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmieri V, et al. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. Nanoscale Horizons. 2019;4(2):273–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bussy C, Kostarelos K. Culture media critically influence graphene oxide effects on plasma membranes. Chem. 2017;2(3):322–3.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Yan C, Chen KL. Adsorption of human serum albumin on graphene oxide: implications for protein corona formation and conformation. Environ Sci  Technol. 2018;53:8631–9.

    Article 

    Google Scholar
     

  • Hu W, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5(5):3693–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng translational Med. 2022;7(1):e10258.

    Article 

    Google Scholar
     

  • Ghosh S, et al. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl Biosaf. 2020;25(1):7–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 2021;23(4):78.

    Article 
    PubMed 

    Google Scholar
     

  • Rohaizad N, et al. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev. 2021;50(1):619–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dudek I, et al. The molecular influence of graphene and graphene oxide on the immune system under in vitro and in vivo conditions. Arch Immunol Ther Exp. 2016;64:195–215.

    Article 
    CAS 

    Google Scholar
     

  • Sun X, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1:203–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vincent M, De I, Lázaro, Kostarelos K. Graphene materials as 2D non-viral gene transfer vector platforms. Gene Ther. 2017;24(3):123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen B, et al. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem. 2011;21(21):7736–41.

    Article 
    CAS 

    Google Scholar
     

  • Siriviriyanun A, et al. Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids. Colloids Surf B. 2014;121:469–73.

    Article 
    CAS 

    Google Scholar
     

  • Nurunnabi M, et al. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 2015;5(52):42141–61.

    Article 
    CAS 

    Google Scholar
     

  • Bao H, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small. 2011;7(11):1569–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makvandi P, et al. A review on advances in graphene-derivative/polysaccharide bionanocomposites: therapeutics, pharmacogenomics and toxicity. Carbohydr Polym. 2020;250:116952.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dowaidar M et al. Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery Biochimica et Biophysica Acta (BBA)-general subjects, 2017. 1861(9): p. 2334–41.

  • Wang H, et al. Graphene oxide–peptide conjugate as an intracellular protease sensor for caspase-3 activation imaging in live cells. Angew Chem Int Ed. 2011;31(50):7065–9.

    Article 

    Google Scholar
     

  • Zakeri A, et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp. 2018;9(1):1488497.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beddoes CM, Case CP, Briscoe WH. Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Colloid Interface Sci. 2015;218:48–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janaszewska A, et al. Cytotoxicity of dendrimers. Biomolecules. 2019;9(8):330.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frost R, et al. Graphene oxide and lipid membranes: size-dependent interactions. Langmuir. 2016;32(11):2708–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomeh MA, Zhao X. Recent advances in microfluidics for the preparation of drug and gene delivery systems. Mol Pharm. 2020;17(12):4421–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Santo R, et al. Microfluidic manufacturing of surface-functionalized graphene oxide nanoflakes for gene delivery. Nanoscale. 2019;11(6):2733–41.

    Article 
    PubMed 

    Google Scholar
     

  • Pozzi D, et al. Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: interplay between nanostructure and composition. Biochim et Biophys Acta (BBA)-Biomembranes. 2014;1838(3):957–67.

    Article 
    CAS 

    Google Scholar
     

  • Caracciolo G, et al. Transfection efficiency boost by designer multicomponent lipoplexes. Biochim et Biophys Acta (BBA)-Biomembranes. 2007;1768(9):2280–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pozzi D, et al. Mechanistic understanding of gene delivery mediated by highly efficient multicomponent envelope-type nanoparticle systems. Mol Pharm. 2013;10(12):4654–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pautot S, Frisken BJ, Weitz D. Engineering asymmetric vesicles. Proc Natl Acad Sci. 2003;100(19):10718–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Santo R, et al. Microfluidic-generated lipid-graphene oxide nanoparticles for gene delivery. Appl Phys Lett. 2019;114(23):233701.

    Article 

    Google Scholar
     

  • Cardarelli F, et al. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol Pharm. 2012;9(2):334–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martens TF, et al. Intracellular delivery of nanomaterials: how to catch endosomal escape in the act. Nano Today. 2014;9(3):344–64.

    Article 
    CAS 

    Google Scholar
     

  • Pozzi D et al. Transfection efficiency boost of cholesterol-containing lipoplexes Biochimica et Biophysica Acta (BBA)-Biomembranes, 2012. 1818(9): p. 2335–43.

  • Quagliarini E, et al. Effect of protein corona on the transfection efficiency of lipid-coated graphene oxide-based cell transfection reagents. Pharmaceutics. 2020;12(2):113.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirshafiee V, et al. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials. 2016;75:295–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tenzer S, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8(10):772–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbero F, et al. Formation of the protein corona: the interface between nanoparticles and the immune system. Sem Immunol. 2017. https://doi.org/10.1016/j.smim.2017.10.001.

    Article 

    Google Scholar
     

  • Digiacomo L, et al. Impact of the protein corona on nanomaterial immune response and targeting ability. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2020;12(4):e1615.

    CAS 
    PubMed 

    Google Scholar
     

  • Reina G, et al. Ultramixing”: a simple and effective method to obtain controlled and stable dispersions of graphene oxide in cell culture media. ACS Appl Mater Interfaces. 2019;11(8):7695–702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith SA, et al. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug Chem. 2018;30(2):263–72.

    Article 
    PubMed 

    Google Scholar
     

  • Li X, et al. Graphene oxide enhanced amine-functionalized titanium metal organic framework for visible-light-driven photocatalytic oxidation of gaseous pollutants. Appl Catal B. 2018;236:501–8.

    Article 
    CAS 

    Google Scholar
     

  • Shafiee A, Iravani S, Varma RS. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm. 2022;3(1):e118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, et al. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron. 2017;89:96–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das L, et al. Synthesis of hybrid hydrogel nano-polymer composite using graphene oxide, Chitosan and PVA and its application in waste water treatment. Environ Technol Innov. 2020. https://doi.org/10.1016/j.eti.2020.100664.

    Article 

    Google Scholar
     

  • Shahryari Z, et al. A brief review of the graphene oxide-based polymer nanocomposite coatings: preparation, characterization, and properties. J Coat Technol Res. 2021;18(4):945–69.

    Article 
    CAS 

    Google Scholar
     

  • Deb A, Vimala R. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery—a comparative study. Int J Biol Macromol. 2018;107:2320–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quagliarini E, et al. Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells. Nanomaterials. 2020;10(8):1482.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu J, et al. Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano. 2017;11(3):2637–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Z, et al. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):1–27.

    Article 

    Google Scholar
     

  • Franqui LS, et al. Interaction of graphene oxide with cell culture medium: evaluating the fetal bovine serum protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. Mater Sci Engineering: C. 2019;100:363–77.

    Article 
    CAS 

    Google Scholar
     

  • Cui L, et al. The protein corona reduces the anticancer effect of graphene oxide in HER-2-positive cancer cells. Nanoscale Adv. 2022;4(18):4009–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corbo C, et al. Personalized protein corona on nanoparticles and its clinical implications. Biomaterials Sci. 2017;5(3):378–87.

    Article 
    CAS 

    Google Scholar
     

  • Hajipour MJ, et al. Personalized disease-specific protein corona influences the therapeutic impact of graphene oxide. Nanoscale. 2015;7(19):8978–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadjidemetriou M, et al. A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials. 2019;188:118–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palchetti S, et al. Exploitation of nanoparticle–protein corona for emerging therapeutic and diagnostic applications. J Mater Chem B. 2016;4(25):4376–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajipour MJ, et al. Personalized protein coronas: a “key” factor at the nanobiointerface. Biomaterials Sci. 2014;2(9):1210–21.

    Article 
    CAS 

    Google Scholar
     

  • Caracciolo G, et al. Disease-specific protein corona sensor arrays may have disease detection capacity. Nanoscale Horizons. 2019;4(5):1063–76.

    Article 
    CAS 

    Google Scholar
     

  • Amici A, et al. In vivo protein corona patterns of lipid nanoparticles. RSC Adv. 2017;7(2):1137–45.

    Article 
    CAS 

    Google Scholar
     

  • Land KJ, et al. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat Microbiol. 2019;4(1):46–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caputo D, et al. Nanotechnology meets oncology: a perspective on the role of the personalized nanoparticle-protein Corona in the Development of Technologies for pancreatic Cancer detection. Int J Mol Sci. 2022;23(18):10591.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quagliarini E, et al. Protein corona-enabled serological tests for early stage cancer detection. Sens Int. 2020;1:100025.

    Article 

    Google Scholar
     

  • Caputo D, Caracciolo G. Nanoparticle-enabled blood tests for early detection of pancreatic ductal adenocarcinoma. Cancer Lett. 2020;470:191–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Santo R, et al. Protein corona profile of graphene oxide allows detection of glioblastoma multiforme using a simple one-dimensional gel electrophoresis technique: a proof-of-concept study. Biomaterials Sci. 2021;9(13):4671–8.

    Article 

    Google Scholar
     

  • Pozzi D, et al. Surface chemistry and serum type both determine the nanoparticle–protein corona. J Proteom. 2015;119:209–17.

    Article 
    CAS 

    Google Scholar
     

  • Xu S-S, et al. Haemoglobin, albumin, lymphocyte and platelet predicts postoperative survival in pancreatic cancer. World J Gastroenterol. 2020;26(8):828.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dolan RD, et al. The role of the systemic inflammatory response in predicting outcomes in patients with advanced inoperable cancer: systematic review and meta-analysis. Crit Rev Oncol/Hematol. 2017;116:134–46.

    Article 
    PubMed 

    Google Scholar
     

  • Caputo D, et al. Multiplexed detection of pancreatic Cancer by combining a nanoparticle-enabled blood test and plasma levels of Acute-Phase Proteins. Cancers. 2022;14(19):4658.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmieri V, et al. The graphene oxide contradictory effects against human pathogens. Nanotechnology. 2017;28(15):152001.

    Article 
    PubMed 

    Google Scholar
     

  • Caputo D, et al. Synergistic analysis of protein Corona and haemoglobin levels detects pancreatic cancer. Cancers. 2020;13(1):93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Santo R, et al. Personalized graphene oxide-protein corona in the human plasma of pancreatic cancer patients. Front Bioeng Biotechnol. 2020;8:491.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quagliarini E, et al. Magnetic levitation of personalized nanoparticle–protein corona as an effective tool for cancer detection. Nanomaterials. 2022;12(9):1397.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Digiacomo L, et al. Magnetic levitation patterns of microfluidic-generated nanoparticle–protein complexes. Nanomaterials. 2022;12(14):2376.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge S, et al. Magnetic levitation in chemistry, materials science, and biochemistry. Angew Chem Int Ed. 2020;59(41):17810–55.

    Article 
    CAS 

    Google Scholar
     

  • Digiacomo L, et al. Detection of pancreatic ductal adenocarcinoma by Ex vivo magnetic levitation of plasma protein-coated nanoparticles. Cancers. 2021;13(20):5155.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quagliarini E, et al. Coupling magnetic levitation of graphene oxide–protein complexes with blood levels of glucose for early detection of pancreatic adenocarcinoma. Cancer Nanotechnol. 2023;14(1):1–12.

    Article 

    Google Scholar
     

  • Castagnola V, et al. Biological recognition of graphene nanoflakes. Nat Commun. 2018;9(1):1577.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar