Nanotechnology

Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells | Journal of Nanobiotechnology


  • Sebastiao MJ, Serra M, Gomes-Alves P, Alves PM. Stem cells characterization: OMICS reinforcing analytics. Curr Opin Biotechnol. 2021;71:175–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou C, Zhang B, Yang Y, Jiang Q, Li T, Gong J, et al. Stem cell-derived exosomes: emerging therapeutic opportunities for wound healing. Stem Cell Res Ther. 2023;14:107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimbrel EA, Lanza R. Next-generation stem cells—ushering in a new era of cell-based therapies. Nat Rev Drug Discov. 2020;19:463–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu C, Zhao L, Zhang L, Bao Q, Li L. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther. 2020;11:377.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veceric-Haler Z, Cerar A, Perse M. (Mesenchymal) stem cell-based therapy in cisplatin-induced acute kidney injury animal model: risk of immunogenicity and tumorigenicity. Stem Cells Int. 2017;2017:7304643.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies–bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013;15:753–9.

    Article 
    PubMed 

    Google Scholar
     

  • Yang M, Peng GH. The molecular mechanism of human stem cell-derived extracellular vesicles in retinal repair and regeneration. Stem Cell Res Ther. 2023;14:84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cocozza F, Grisard E, Martin-Jaular L, Mathieu M, Théry C. SnapShot: extracellular vesicles. Cell. 2020;182:262-262.e261.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao H, Zeng Y, Huang X, Luodan A, Liang Q, Xie J, et al. Extracellular vesicles from organoid-derived human retinal progenitor cells prevent lipid overload-induced retinal pigment epithelium injury by regulating fatty acid metabolism. J Extracell Vesicles. 2024;13:e12401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeppesen DK, Zhang Q, Franklin JL, Coffey RJ. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 2023;33:667–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weng Z, Zhang B, Wu C, Yu F, Han B, Li B, et al. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol. 2021;14:136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: a bright star of nanomedicine. Biomaterials. 2021;269:120467.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X, et al. Advances in therapeutic applications of extracellular vesicles. Int J Nanomed. 2023;18:3285–307.

    Article 
    CAS 

    Google Scholar
     

  • Wu J, Ma Y, Chen Y. Extracellular vesicles and COPD: foe or friend? J Nanobiotechnol. 2023;21:147.

    Article 

    Google Scholar
     

  • Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis. 2022;13:580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 2021. https://doi.org/10.1186/s13045-021-01037-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong L, Wang Y, Zheng T, Pu Y, Ma Y, Qi X, et al. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Res Ther. 2021;12:4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou L, Zhu Z, Jiang F, Zhao J, Jia Q, Jiang Q, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles alleviated silica induced lung inflammation and fibrosis in mice via circPWWP2A/miR-223-3p/NLRP3 axis. Ecotoxicol Environ Saf. 2023;251:114537.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Shen N, Liu A, Wang W, Zhang L, Sui Z, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-34c-5p ameliorates RIF by inhibiting the core fucosylation of multiple proteins. Mol Ther. 2022;30:763–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eirin A, Zhu XY, Puranik AS, Tang H, McGurren KA, van Wijnen AJ, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int. 2017;92:114–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu P, Tang Y, Jin C, Wang M, Li L, Liu Z, et al. Neutrophil membrane engineered HucMSC sEVs alleviate cisplatin-induced AKI by enhancing cellular uptake and targeting. J Nanobiotechnol. 2022;20:353.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, et al. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnol. 2023;21:29.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Zhang X, Zhang H, Song P, Pan W, Xu P, et al. Mesenchymal stem cells derived extracellular vesicles alleviate traumatic hemorrhagic shock induced hepatic injury via IL-10/PTPN22-mediated M2 kupffer cell polarization. Front Immunol. 2021;12:811164.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Liang Z, Rao J, Xie H, Zhou M, Xu X, et al. Hypoxic-preconditioned mesenchymal stem cell-derived small extracellular vesicles promote the recovery of spinal cord injury by affecting the phenotype of astrocytes through the miR-21/JAK2/STAT3 pathway. CNS Neurosci Ther. 2023. https://doi.org/10.1111/cns.14428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong Z, Tian Y, Luo X, Zou J, Wu L, Tian J. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect against DOX-Induced heart failure through the miR-100-5p/NOX4 pathway. Front Bioeng Biotechnol. 2021;9:703241.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao J, Wang B, Tang T, Lv L, Ding Z, Li Z, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res Ther. 2020;11:206.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv. 2016;34:1427–41.

    Article 
    PubMed 

    Google Scholar
     

  • Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today. 2015;18:539–53.

    Article 
    CAS 

    Google Scholar
     

  • In JG, Foulke-Abel J, Estes MK, Zachos NC, Kovbasnjuk O, Donowitz M. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol. 2016;13:633–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot M-C, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther. 2018;26:2838–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun L, Ji Y, Chi B, Xiao T, Li C, Yan X, et al. A 3D culture system improves the yield of MSCs-derived extracellular vesicles and enhances their therapeutic efficacy for heart repair. Biomed Pharmacother. 2023;161:114557.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230:16–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fontoura JC, Viezzer C, Dos Santos FG, Ligabue RA, Weinlich R, Puga RD, et al. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C Mater Biol Appl. 2020;107:110264.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32:266–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Millan C, Prause L, Vallmajo-Martin Q, Hensky N, Eberli D. Extracellular vesicles from 3d engineered microtissues harbor disease-related cargo absent in EVs from 2D cultures. Adv Healthc Mater. 2022;11:e2002067.

    Article 
    PubMed 

    Google Scholar
     

  • Rocha S, Carvalho J, Oliveira P, Voglstaetter M, Schvartz D, Thomsen AR, et al. 3D cellular architecture affects microrna and protein cargo of extracellular vesicles. Adv Sci (Weinh). 2019;6:1800948.

    Article 
    PubMed 

    Google Scholar
     

  • Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles. 2018;7:1522236.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Wang N, Huang Y, Li Y, Li G, Lin Y, et al. Extracellular vesicles from three dimensional culture of human placental mesenchymal stem cells ameliorated renal ischemia/reperfusion injury. Int J Artif Organs. 2021;45:181–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang N, Li X, Zhong Z, Qiu Y, Liu S, Wu H, et al. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway. J Nanobiotechnol. 2021;19:437.

    Article 
    CAS 

    Google Scholar
     

  • Han M, Yang H, Lu X, Li Y, Liu Z, Li F, et al. Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair. Nano Lett. 2022;22:6391–401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Chen J, Fu H, Kuang S, He F, Zhang M, et al. Exosomes derived from 3D-cultured MSCs improve therapeutic effects in periodontitis and experimental colitis and restore the Th17 cell/Treg balance in inflamed periodontium. Int J Oral Sci. 2021;13:43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Trans Med. 2019;11:eaav8521.

    Article 
    CAS 

    Google Scholar
     

  • Ahn SY, Park WS, Kim YE, Sung DK, Sung SI, Ahn JY, et al. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Exp Mol Med. 2018;50:1–12.

    PubMed 

    Google Scholar
     

  • Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49:e346–e346.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res. 2023;10:36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu X, Guo H, Wei X, Lu D, Shu W, Song Y, et al. Current status and prospect of delivery vehicle based on mesenchymal stem cell-derived exosomes in liver diseases. Int J Nanomed. 2023;18:2873–90.

    Article 
    CAS 

    Google Scholar
     

  • Varderidou-Minasian S, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics. 2020;10:5979–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao H, Cheng Y, Gao H, Zhuang J, Zhang W, Bian Q, et al. In Vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano. 2020;14:4014–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Wang Y, Luo X, Gao X, Gu W, Ma Y, et al. A non-invasive strategy for suppressing asthmatic airway inflammation and remodeling: inhalation of nebulized hypoxic hUCMSC-derived extracellular vesicles. Front Immunol. 2023;14:1150971.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Do AD, Kurniawati I, Hsieh C-L, Wong T-T, Lin Y-L, Sung S-Y. Application of mesenchymal stem cells in targeted delivery to the brain: potential and challenges of the extracellular vesicle-based approach for brain tumor treatment. Int J Mol Sci. 2021;22:11187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turano E, Scambi I, Virla F, Bonetti B, Mariotti R. Extracellular vesicles from mesenchymal stem cells: towards novel therapeutic strategies for neurodegenerative diseases. Int J Mol Sci. 2023;24:2917.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu L, Cai Y, Geng Y, Yao X, Wang L, Cao H, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate tPA-induced blood–brain barrier disruption in murine ischemic stroke models. Acta Biomater. 2022;154:424–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49:347–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rong Y, Wang Z, Tang P, Wang J, Ji C, Chang J, et al. Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioact Mater. 2023;23:328–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Wang D, Ye Z, Xu J. Engineering extracellular vesicles as delivery systems in therapeutic applications. Adv Sci (Weinh). 2023;10:e2300552.

    Article 
    PubMed 

    Google Scholar
     

  • Ridzuan N, Zakaria N, Widera D, Sheard J, Morimoto M, Kiyokawa H, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD). Stem Cell Res Ther. 2021;12:54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov. 2021;7:212.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Lu T, Zhou C, Cai J, Zhang X, Liang J, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect liver ischemia/reperfusion injury by reducing CD154 expression on CD4+ T cells via CCT2. Adv Sci (Weinh). 2020;7:1903746.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation. 2019;16:216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S-J, Qiu Z-Z, Chen F-W, Mao A-L, Bai J-C, Hong Y-J, et al. Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-181d protect rats against renal fibrosis by inhibiting KLF6 and the NF-κB signaling pathway. Cell Death Dis. 2022;13:535.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan TQ, Gao ZL, Luo AX, Chen D, Tong JB, Huang JF. Adipose mesenchymal stem cell-derived extracellular vesicles reduce glutamate-induced excitotoxicity in the retina. Neural Regen Res. 2023;18:2315–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy D, Abadchi SN, Shababi N, Ravari MR, Pirolli NH, Bergeron C, et al. Induced pluripotent stem cell-derived extracellular vesicles promote wound repair in a diabetic mouse model via an anti-inflammatory immunomodulatory mechanism. Adv Healthc Mater. 2023;12:e2300879.

    Article 
    PubMed 

    Google Scholar
     

  • Yin T, Liu Y, Ji W, Zhuang J, Chen X, Gong B, et al. Engineered mesenchymal stem cell-derived extracellular vesicles: a state-of-the-art multifunctional weapon against Alzheimer’s disease. Theranostics. 2023;13:1264–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nassar W, El-Ansary M, Sabry D, Mostafa MA, Fayad T, Kotb E, et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res. 2016;20:21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon HH, Yang SH, Lee J, Park BC, Park KY, Jung JY, et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study. Acta Derm Venereol. 2020;100:adv00310.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchini A, Gelain F. Synthetic scaffolds for 3D cell cultures and organoids: applications in regenerative medicine. Crit Rev Biotechnol. 2022;42:468–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020;29:747–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chu M, Wang H, Bian L, Huang J, Wu D, Zhang R, et al. Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia. Stem Cell Rev Rep. 2022;18:2152–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazari H, Alborzi F, Heirani-Tabasi A, Hadizadeh A, Asbagh RA, Behboudi B, et al. Evaluating the safety and efficacy of mesenchymal stem cell-derived exosomes for treatment of refractory perianal fistula in IBD patients: clinical trial phase I. Gastroenterol Report. 2022;10:075.

    Article 

    Google Scholar
     

  • Pak H, Hadizadeh A, Heirani-Tabasi A, Soleimani M, Asbagh RA, Fazeli MS, et al. Safety and efficacy of injection of human placenta mesenchymal stem cells derived exosomes for treatment of complex perianal fistula in non-Crohn’s cases: clinical trial phase I. J Gastroenterol Hepatol. 2023;38:539–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrell CR, Miloradovic D, Sadikot R, Fellabaum C, Markovic BS, Miloradovic D, et al. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product “Exo-d-MAPPS” in attenuation of chronic airway inflammation. Anal Cell Pathol (Amst). 2020;2020:3153891.

    PubMed 

    Google Scholar
     

  • Zhu YG, Shi MM, Monsel A, Dai CX, Dong X, Shen H, et al. Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: a pilot study. Stem Cell Res Ther. 2022;13:220.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi MM, Yang QY, Monsel A, Yan JY, Dai CX, Zhao JY, et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J Extracell Vesicles. 2021;10:e12134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson HV. A new method by which sponges may be artificially reared. Science. 1907;25:912–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moscona A, Moscona H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat. 1952;86:287–301.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehrmann RL, Gey GO. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J Natl Cancer Inst. 1956;16:1375–403.

    CAS 
    PubMed 

    Google Scholar
     

  • Haji-Karim M, Carlsson J. Proliferation and viability in cellular spheroids of human origin. Cancer Res. 1978;38:1457–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Montgomery RK. Morphogenesis in vitro of dissociated fetal rat small intestinal cells upon an open surface and subsequent to collagen gel overlay. Dev Biol. 1986;117:64–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci U S A. 2003;100:12741–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Ex vivo expansion of adipose tissue-derived stem cells in spinner flasks. Biotechnol J. 2009;4:1198–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue Eng Part C Methods. 2010;16:735–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Cheng Y, Yu Y, Fu F, Chen Z, Zhao Y, et al. Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Appl Mater Interfaces. 2015;7:27035–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferlin KM, Prendergast ME, Miller ML, Kaplan DS, Fisher JP. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation. Acta Biomater. 2016;32:161–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New frontiers in three-dimensional culture platforms to improve diabetes research. Pharmaceutics. 2023;15:725.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anthon SG, Valente KP. Vascularization strategies in 3D cell culture models: from scaffold-free models to 3D bioprinting. Int J Mol Sci. 2022;23:14582.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cesarz Z, Tamama K. Spheroid culture of mesenchymal stem cells. Stem Cells Int. 2016;2016:9176357.

    Article 
    PubMed 

    Google Scholar
     

  • Huang SW, Tzeng SC, Chen JK, Sun JS, Lin FH. A dynamic hanging-drop system for mesenchymal stem cell culture. Int J Mol Sci. 2020;21:4298.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verjans ET, Doijen J, Luyten W, Landuyt B, Schoofs L. Three-dimensional cell culture models for anticancer drug screening: worth the effort? J Cell Physiol. 2018;233:2993–3003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caleffi JT, Aal MCE, Gallindo HOM, Caxali GH, Crulhas BP, Ribeiro AO, et al. Magnetic 3D cell culture: state of the art and current advances. Life Sci. 2021;286:120028.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv D, Hu Z, Lu L, Lu H, Xu X. Three-dimensional cell culture: a powerful tool in tumor research and drug discovery. Oncol Lett. 2017;14:6999–7010.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Huang Z, Gao W, Gao W, He R, Li Y, et al. Current advances in 3D dynamic cell culture systems. Gels. 2022;8:829.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater. 2019;4:271–92.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li XY, Deng WS, Wang ZQ, Li ZC, Chen SL, Song Z, et al. Injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells promotes functional recovery in patients with spontaneous intracerebral hemorrhage: phase I clinical trial. Neural Regen Res. 2023;18:1999–2004.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi W, Wu Y, Wu J, Gao Y, Zhao P, Lu X. NPS-crosslinked fibrin gels load with EMSCs to repair peripheral nerve injury in rats. Macromol Biosci. 2023;23:e2200381.

    Article 
    PubMed 

    Google Scholar
     

  • Li K, O’Dwyer R, Yang F, Cymerman J, Li J, Feldman JD, et al. Enhancement of acellular biomineralization, dental pulp stem cell migration, and differentiation by hybrid fibrin gelatin scaffolds. Dent Mater. 2023;39:305–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lukin I, Erezuma I, Garcia-Garcia P, Reyes R, Evora C, Kadumundi FB, et al. Sumecton reinforced gelatin-based scaffolds for cell-free bone regeneration. Int J Biol Macromol. 2023;249:126023.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu J, Chen F, Chai H, Gao L, Lv X, Yu L. Lyophilized Gelatin@non-Woven scaffold to promote spheroids formation and enrich cancer stem cell incidence. Nanomaterials (Basel). 2022;12:808.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong JE, Han SS, Shim HE, Kim W, Lee BS, Kim YJ, et al. Hyaluronic microparticle-based biomimetic artificial neighbors of cells for three-dimensional cell culture. Carbohydr Polym. 2022;294:119770.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando Y, Chang FC, James M, Zhou Y, Zhang M. Chitosan scaffolds as microcarriers for dynamic culture of human neural stem cells. Pharmaceutics. 2023;15:1957.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohabatpour F, Duan X, Yazdanpanah Z, Tabil XL, Lobanova L, Zhu N, et al. Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineering in vitro. Biofabrication. 2022. https://doi.org/10.1088/1758-5090/acab35.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang S, Xu F, Jin M, Wang Z, Xu X, Zhou Y, et al. Development of a high-throughput micropatterned agarose scaffold for consistent and reproducible hPSC-derived liver organoids. Biofabrication. 2022. https://doi.org/10.1088/1758-5090/ac933c.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Chu R, Ni N, Nan G. The effect of Matrigel as scaffold material for neural stem cell transplantation for treating spinal cord injury. Sci Rep. 2020;10:2576.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin D, Cai B, Wang L, Cai L, Wang Z, Xie J, et al. A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect. Biomaterials. 2020;253:120095.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee H, Hong HJ, Ahn S, Kim D, Kang SH, Cho K, et al. One-pot synthesis of double-network PEG/collagen hydrogel for enhanced adipogenic differentiation and retrieval of adipose-derived stem cells. Polymers (Basel). 2023;15:1777.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu IC, Liou JW, Yang CH, Chen JH, Chen KY, Hung CH. Self-assembly of gelatin and collagen in the polyvinyl alcohol substrate and its influence on cell adhesion, proliferation, shape, spreading and differentiation. Front Bioeng Biotechnol. 2023;11:1193849.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Amissah OB, Huangfang X, Wang L, Dieu Habimana J, Lv L, et al. Large-scale expansion of human umbilical cord-derived mesenchymal stem cells using PLGA@PLL scaffold. Bioresour Bioprocess. 2023;10:18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng L, Li D, Wang W, Zhang Q, Zhou X, Liu D, et al. Bilayered scaffold prepared from a kartogenin-loaded hydrogel and BMP-2-Derived peptide-loaded porous nanofibrous scaffold for osteochondral defect repair. ACS Biomater Sci Eng. 2019;5:4564–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salehi S, Tavakoli M, Mirhaj M, Varshosaz J, Labbaf S, Karbasi S, et al. A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications. Carbohydr Polym. 2023;312:120787.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Peng L, Li L, Huang C, Shi K, Meng X, et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021;279:121216.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barcena AJR, Perez JVD, Damasco JA, Bernardino MR, San Valentin EMD, Klusman C, et al. Gold nanoparticles for monitoring of mesenchymal stem-cell-loaded bioresorbable polymeric wraps for arteriovenous fistula maturation. Int J Mol Sci. 2023;24:11754.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: outcomes of preclinical studies. Bioact Mater. 2023;27:505–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biju TS, Priya VV, Francis AP. Role of three-dimensional cell culture in therapeutics and diagnostics: an updated review. Drug Deliv Transl Res. 2023;13:2239–53.

    Article 
    PubMed 

    Google Scholar
     

  • Mai B, Jia M, Liu S, Sheng Z, Li M, Gao Y, et al. Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl Mater Interfaces. 2020;12:10156–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghandforoushan P, Alehosseini M, Golafshan N, Castilho M, Dolatshahi-Pirouz A, Hanaee J, et al. Injectable hydrogels for cartilage and bone tissue regeneration: a review. Int J Biol Macromol. 2023;246:125674.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dvořáková J, Trousil J, Podhorská B, Mikšovská Z, Janoušková O, Proks V. Enzymatically cross-linked hydrogels based on synthetic poly(α-amino acid)s functionalized with RGD peptide for 3D mesenchymal stem cell culture. Biomacromol. 2021;22:1417–31.

    Article 

    Google Scholar
     

  • Teng B, Zhang S, Pan J, Zeng Z, Chen Y, Hei Y, et al. A chondrogenesis induction system based on a functionalized hyaluronic acid hydrogel sequentially promoting hMSC proliferation, condensation, differentiation, and matrix deposition. Acta Biomater. 2021;122:145–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jose G, Shalumon KT, Chen JP. Natural polymers based hydrogels for cell culture applications. Curr Med Chem. 2020;27:2734–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhasmana A, Malik S, Ranjan A, Chauhan A, Tashkandi HM, Haque S, et al. A bioengineered quercetin-loaded 3D bio-polymeric graft for tissue regeneration and repair. Biomedicines. 2022;10:3157.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casajuana Ester M, Day RM. Production and utility of extracellular vesicles with 3D culture methods. Pharmaceutics. 2023;15:663.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei X, Wang L, Duan C, Chen K, Li X, Guo X, et al. Cardiac patches made of brown adipose-derived stem cell sheets and conductive electrospun nanofibers restore infarcted heart for ischemic myocardial infarction. Bioact Mater. 2023;27:271–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan J, Li Z, Guo J, Liu S, Guo J. Organ-on-a-chip: a new tool for in vitro research. Biosens Bioelectron. 2022;216:114626.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater. 2023;19:50–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang X, Wu H, Xie J, Wang N, Chen Q, Zhong Z, et al. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture. Cell Prolif. 2021;54:e13112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim GJ, Lee KJ, Choi JW, An JH. Modified industrial three-dimensional polylactic acid scaffold cell chip promotes the proliferation and differentiation of human neural stem cells. Int J Mol Sci. 2022;23:2204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Feng Q, Ma X, Deng Y, Zhang K, Ooi HS, et al. Dynamic gelatin-based hydrogels promote the proliferation and self-renewal of embryonic stem cells in long-term 3D culture. Biomaterials. 2022;289:121802.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cesare E, Urciuolo A, Stuart HT, Torchio E, Gesualdo A, Laterza C, et al. 3D ECM-rich environment sustains the identity of naive human iPSCs. Cell Stem Cell. 2022;29:1703-1717.e1707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao S, Duan K, Ai Z, Niu B, Chen Y, Kong R, et al. Generation of cortical neurons through large-scale expanding neuroepithelial stem cell from human pluripotent stem cells. Stem Cell Res Ther. 2020;11:431.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Zeng X, Zhang M, Wang B, Guo X, Shan W, et al. Efficient expansion of rare human circulating hematopoietic stem/progenitor cells in steady-state blood using a polypeptide-forming 3D culture. Protein Cell. 2022;13:808–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho DLL, Lee S, Du J, Weiss JD, Tam T, Sinha S, et al. Large-scale production of wholly cellular bioinks via the optimization of human induced pluripotent stem cell aggregate culture in automated bioreactors. Adv Healthc Mater. 2022;11:e2201138.

    Article 
    PubMed 

    Google Scholar
     

  • Yen BL, Hsieh CC, Hsu PJ, Chang CC, Wang LT, Yen ML. Three-dimensional spheroid culture of human mesenchymal stem cells: offering therapeutic advantages and In Vitro glimpses of the In Vivo state. Stem Cells Transl Med. 2023;12:235–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrion F, et al. Dynamic culture of mesenchymal stromal/stem cell spheroids and secretion of paracrine factors. Front Bioeng Biotechnol. 2022;10:916229.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeske R, Liu C, Duke L, Canonicco Castro ML, Muok L, Arthur P, et al. Upscaling human mesenchymal stromal cell production in a novel vertical-wheel bioreactor enhances extracellular vesicle secretion and cargo profile. Bioact Mater. 2023;25:732–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim JY, Rhim W-K, Cha S-G, Woo J, Lee JY, Park CG, et al. Bolstering the secretion and bioactivities of umbilical cord MSC-derived extracellular vesicles with 3D culture and priming in chemically defined media. Nano Convergence. 2022;9:57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Almeida FM, Bernardes N, Oliveira FD, Costa AC, Fernandes-Platzgummer A, Farinha JP, et al. Scalable production of human mesenchymal stromal cell-derived extracellular vesicles under serum-/xeno-free conditions in a microcarrier-based bioreactor culture system. Front Cell Develop Biol. 2020;8:553444.

    Article 

    Google Scholar
     

  • Yan L, Wu X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity. Cell Biol Toxicol. 2020;36:165–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kronstadt SM, Patel DB, Born LJ, Levy D, Lerman MJ, Mahadik B, et al. Mesenchymal stem cell culture within perfusion bioreactors incorporating 3D-printed scaffolds enables improved extracellular vesicle yield with preserved bioactivity. Adv Healthcare Mater. 2023;12:e2300584.

    Article 

    Google Scholar
     

  • Kim M, Yun H-W, Park DY, Choi BH, Min B-H. Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells. Tissue Eng Regenerat Med. 2018;15:427–36.

    Article 
    CAS 

    Google Scholar
     

  • Yu W, Li S, Guan X, Zhang N, Xie X, Zhang K, et al. Higher yield and enhanced therapeutic effects of exosomes derived from MSCs in hydrogel-assisted 3D culture system for bone regeneration. Biomater Adv. 2022;133:112646.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gobin J, Muradia G, Mehic J, Westwood C, Couvrette L, Stalker A, et al. Hollow-fiber bioreactor production of extracellular vesicles from human bone marrow mesenchymal stromal cells yields nanovesicles that mirrors the immuno-modulatory antigenic signature of the producer cell. Stem Cell Res Ther. 2021;12:127.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min Lim K, Kim S, Yeom J, Choi Y, Lee Y, An J, et al. Advanced 3D dynamic culture system with transforming growth factor-β3 enhances production of potent extracellular vesicles with modified protein cargoes via upregulation of TGF-β signaling. J Adv Res. 2023;47:57–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan X, Sun L, Jeske R, Nkosi D, York SB, Liu Y, et al. Engineering extracellular vesicles by three-dimensional dynamic culture of human mesenchymal stem cells. J Extracell Vesicles. 2022;11:e12235.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Zhou D, Nie Z, Lu L, Lin Z, Zhou D, et al. A scalable coaxial bioprinting technology for mesenchymal stem cell microfiber fabrication and high extracellular vesicle yield. Biofabrication. 2022. https://doi.org/10.1088/1758-5090/ac3b90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang Y, Lv D, Song T, Niu C, Wang Y. Tumor suppressive role of microRNA-139-5p in bone marrow mesenchymal stem cells-derived extracellular vesicles in bladder cancer through regulation of the KIF3A/p21 axis. Cell Death Dis. 2022;13:599.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Gao J, Li X, Lin D, Li Z, Wang J, et al. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote liver regeneration via miR-20a-5p/PTEN. Front Pharmacol. 2023;14:1168545.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng P, Cao T, Zhao X, Lu W, Miao S, Ning F, et al. Nidogen1-enriched extracellular vesicles accelerate angiogenesis and bone regeneration by targeting Myosin-10 to regulate endothelial cell adhesion. Bioact Mater. 2022;12:185–97.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou J, Lin Y, Kang X, Liu Z, Zhang W, Xu F. microRNA-186 in extracellular vesicles from bone marrow mesenchymal stem cells alleviates idiopathic pulmonary fibrosis via interaction with SOX4 and DKK1. Stem Cell Res Ther. 2021;12:96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu T, Chu S, Liu X, Li J, Chen Q, Xu M, et al. Extracellular vesicles derived from EphB2-overexpressing bone marrow mesenchymal stem cells ameliorate DSS-induced colitis by modulating immune balance. Stem Cell Res Ther. 2021;12:181.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Wang W, Wang Y, Zhao H, Han X, Zhao T, et al. Extracellular vesicle-encapsulated miR-29b-3p released from bone marrow-derived mesenchymal stem cells underpins osteogenic differentiation. Front Cell Dev Biol. 2020;8:581545.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Wang Y, Zhao H, Han X, Zhao T, Qu P, et al. Extracellular vesicle-encapsulated miR-22-3p from bone marrow mesenchymal stem cell promotes osteogenic differentiation via FTO inhibition. Stem Cell Res Ther. 2020;11:227.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding F, Liu J, Zhang X. microRNA-375 released from extracellular vesicles of bone marrow mesenchymal stem cells exerts anti-oncogenic effects against cervical cancer. Stem Cell Res Ther. 2020;11:455.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao W, Liang T, He R, Ren J, Yao H, Wang K, et al. Exosomes from 3D culture of marrow stem cells enhances endothelial cell proliferation, migration, and angiogenesis via activation of the HMGB1/AKT pathway. Stem Cell Research. 2020;50:102122.

    Article 
    PubMed 

    Google Scholar
     

  • Cha JM, Shin EK, Sung JH, Moon GJ, Kim EH, Cho YH, et al. Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci Rep. 2018;8:1171.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jalilian E, Massoumi H, Bigit B, Amin S, Katz EA, Guaiquil VH, et al. Bone marrow mesenchymal stromal cells in a 3D system produce higher concentration of extracellular vesicles (EVs) with increased complexity and enhanced neuronal growth properties. Stem Cell Res Ther. 2022;13:425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2017;111:69–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cone AS, Yuan X, Sun L, Duke LC, Vreones MP, Carrier AN, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics. 2021;11:8129–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camoes SP, Bulut O, Yazar V, Gaspar MM, Simoes S, Ferreira R, et al. 3D-MSCs A151 ODN-loaded exosomes are immunomodulatory and reveal a proteomic cargo that sustains wound resolution. J Adv Res. 2022;41:113–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Z, Yin H, Wu J, Tian G, Li M, Liao Z, et al. Engineering exosomes by three-dimensional porous scaffold culture of human umbilical cord mesenchymal stem cells promote osteochondral repair. Mater Today Bio. 2023;19:100549.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Zhai Y, Hao Y, Zhu Z, Cheng G. The regulatory functionality of exosomes derived from hUMSCs in 3D culture for Alzheimer’s disease therapy. Small. 2020;16:e1906273.

    Article 
    PubMed 

    Google Scholar
     

  • Xu C, Zhao J, Li Q, Hou L, Wang Y, Li S, et al. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Res Ther. 2020;11:503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faruqu FN, Liam-Or R, Zhou S, Nip R, Al-Jamal KT. Defined serum-free three-dimensional culture of umbilical cord-derived mesenchymal stem cells yields exosomes that promote fibroblast proliferation and migration in vitro. FASEB J. 2021;35:e21206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie L, Mao M, Zhou L, Zhang L, Jiang B. Signal factors secreted by 2D and spheroid mesenchymal stem cells and by cocultures of mesenchymal stem cells derived microvesicles and retinal photoreceptor neurons. Stem Cells Int. 2017;2017:2730472.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miceli V, Pampalone M, Vella S, Carreca AP, Amico G, Conaldi PG. Comparison of immunosuppressive and angiogenic properties of human amnion-derived mesenchymal stem cells between 2D and 3D culture systems. Stem Cells Internat. 2019;2019:7486279.

    Article 

    Google Scholar
     

  • Guo S, Debbi L, Zohar B, Samuel R, Arzi RS, Fried AI, et al. Stimulating extracellular vesicles production from engineered tissues by mechanical forces. Nano Lett. 2021;21:2497–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarmalaviciute A, Tunaitis V, Pivoraite U, Venalis A, Pivoriunas A. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy. 2015;17:932–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kusuma GD, Li A, Zhu D, McDonald H, Inocencio IM, Chambers DC, et al. Effect of 2D and 3D culture microenvironments on mesenchymal stem cell-derived extracellular vesicles potencies. Front Cell Develop Biol. 2022;10:819726.

    Article 

    Google Scholar
     

  • Ma D, Wu Z, Zhao X, Zhu X, An Q, Wang Y, et al. Immunomodulatory effects of umbilical mesenchymal stem cell-derived exosomes on CD4(+) T cells in patients with primary Sjogren’s syndrome. Inflammopharmacology. 2023;31:1823–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Lin Y, Bai W, Sun L, Tian M. Human umbilical cord mesenchymal stem cell-derived exosome suppresses programmed cell death in traumatic brain injury via PINK1/Parkin-mediated mitophagy. CNS Neurosci Ther. 2023;29:2236–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou Z, Yang F, Chen K, Wang Y, Qin J, Liang F. hUC-MSC-EV-miR-24 enhances the protective effect of dexmedetomidine preconditioning against myocardial ischemia-reperfusion injury through the KEAP1/Nrf2/HO-1 signaling. Drug Deliv Transl Res. 2024;14:143–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang ZX, Zhou YJ, Gu P, Zhao W, Chen HX, Wu RY, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson’s disease and neuronal damage through inhibition of microglia. Neural Regen Res. 2023;18:2291–300.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving beta-cell destruction. ACS Nano. 2018;12:7613–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji C, Zhang J, Zhu Y, Shi H, Yin S, Sun F, et al. Exosomes derived from hucMSC attenuate renal fibrosis through CK1delta/beta-TRCP-mediated YAP degradation. Cell Death Dis. 2020;11:327.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang F, Wu Y, Chen Y, Xi J, Chu Y, Jin J, et al. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate liver steatosis by promoting fatty acid oxidation and reducing fatty acid synthesis. JHEP Rep. 2023;5:100746.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao M, Xie J, Huck WTS. Recent advances in engineering the stem cell microniche in 3D. Adv Sci (Weinh). 2018;5:1800448.

    Article 
    PubMed 

    Google Scholar
     

  • Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol. 2019;20:738–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saraswathibhatla A, Indana D, Chaudhuri O. Cell–extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24:495–516.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim ES, Kida K, Mok J, Seong Y, Jo SY, Kanaki T, et al. Cellhesion VP enhances the immunomodulating potential of human mesenchymal stem cell-derived extracellular vesicles. Biomaterials. 2021;271:120742.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Shen K, Sun Y, Cao P, Zhang J, Zhang W, et al. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Kruppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis. Burns Trauma. 2023;11:tkad034.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ming-Kun C, Zi-Xian C, Mao-Ping C, Hong C, Zhuang-Fei C, Shan-Chao Z. Engineered extracellular vesicles: a new approach for targeted therapy of tumors and overcoming drug resistance. Cancer Commun (Lond). 2024;44:205–25.

    Article 
    PubMed 

    Google Scholar
     

  • Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. 2024;9:17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar