Nanotechnology

Biosafe cerium oxide nanozymes protect human pluripotent stem cells and cardiomyocytes from oxidative stress | Journal of Nanobiotechnology


  • Yilmaz A, Benvenisty N. Defining human pluripotency. Cell Stem Cell. 2019;25:9–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eicher AK, Kechele DO, Sundaram N, Berns HM, Poling HM, Haines LE, Sanchez JG, Kishimoto K, Krishnamurthy M, Han L, et al. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell. 2022;29:36-51.e36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahumenska R, Nosal V, Smolar M, Okajcekova T, Skovierova H, Strnadel J, Halasova E. Induced pluripotency: a powerful tool for in vitro modeling. Int J Mol Sci. 2020;21:8910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Protze SI, Lee JH, Keller GM. Human pluripotent stem cell-derived cardiovascular cells: from developmental biology to therapeutic applications. Cell Stem Cell. 2019;25:311–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida Y, Yamanaka S. Induced pluripotent stem cells 10 years later: for cardiac applications. Circ Res. 2017;120:1958–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanosaki S, Tohyama S, Kishino Y, Fujita J, Fukuda K. Metabolism of human pluripotent stem cells and differentiated cells for regenerative therapy: a focus on cardiomyocytes. Inflamm Regen. 2021;41:5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020;13:1057–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological signaling functions of reactive oxygen species in stem cells: from flies to man. Front Cell Dev Biol. 2021;9: 714370.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui P, Zhang P, Zhang Y, Sun L, Cui G, Guo X, Wang H, Zhang X, Shi Y, Yu Z. HIF-1α/Actl6a/H3K9ac axis is critical for pluripotency and lineage differentiation of human induced pluripotent stem cells. FASEB J. 2020;34:5740–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji A-R, Ku S-Y, Cho MS, Kim YY, Kim YJ, Oh SK, Kim SH, Moon SY, Choi YM. Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med. 2010;42:175–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakrabarty RP, Chandel NS. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell. 2021;28:394–408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan DQ, Suda T. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxid Redox Signal. 2018;29:149–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Sante M, Antonucci S, Pontarollo L, Cappellaro I, Segat F, Deshwal S, Greotti E, Grilo LF, Menabò R, Di Lisa F, Kaludercic N. Monoamine oxidase A-dependent ROS formation modulates human cardiomyocyte differentiation through AKT and WNT activation. Basic Res Cardiol. 2023;118:4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi S, Tang J, Zhang L, Huang L, Chen J, Wang Z, Chen D, Du L. Fine particulate matter reduces the pluripotency and proliferation of human embryonic stem cells through ROS induced AKT and ERK signaling pathway. Reprod Toxicol. 2020;96:231–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fojtík P, Beckerová D, Holomková K, Šenfluk M, Rotrekl V. Both hypoxia-inducible factor 1 and MAPK signaling pathway attenuate PI3K/AKT via suppression of reactive oxygen species in human pluripotent stem cells. Front Cell Dev Biol. 2020;8: 607444.

    Article 
    PubMed 

    Google Scholar
     

  • Ren M, Wang T, Huang L, Ye X, Han Z. Mesoporous silica nanoparticles rescue H2O2-induced inhibition of cardiac differentiation. Cell Struct Funct. 2018;43:109–17.

    Article 
    PubMed 

    Google Scholar
     

  • Momtahan N, Crosby CO, Zoldan J. The role of reactive oxygen species in in vitro cardiac maturation. Trends Mol Med. 2019;25:482–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Carlo MN, Said M, Ling H, Valverde CA, De Giusti VC, Sommese L, Palomeque J, Aiello EA, Skapura DG, Rinaldi G, et al. CaMKII-dependent phosphorylation of cardiac ryanodine receptors regulates cell death in cardiac ischemia/reperfusion injury. J Mol Cell Cardiol. 2014;74:274–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang KC, Kyle JW, Makielski JC, Dudley SC Jr. Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res. 2015;116:1937–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants. 2020;9:864.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients. 2019;11:2090.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giorgi C, Marchi S, Simoes ICM, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jędrak P, Pierzynowska K, et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol. 2018;340:209–344.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal A, Maldonado Rosas I, Anagnostopoulou C, Cannarella R, Boitrelle F, Munoz LV, Finelli R, Durairajanayagam D, Henkel R, Saleh R. Oxidative stress and assisted reproduction: a comprehensive review of its pathophysiological role and strategies for optimizing embryo culture environment. Antioxidants. 2022;11:477.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verswyvel H, Deben C, Wouters A, Lardon F, Bogaerts A, Smits E, Lin A. Phototoxicity and cell passage affect intracellular reactive oxygen species levels and sensitivity towards non-thermal plasma treatment in fluorescently-labeled cancer cells. J Phys D Appl Phys. 2023;56: 294001.

    Article 

    Google Scholar
     

  • Caritá AC, Fonseca-Santos B, Shultz JD, Michniak-Kohn B, Chorilli M, Leonardi GR. Vitamin C: one compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine. 2020;24: 102117.

    Article 
    PubMed 

    Google Scholar
     

  • Sezgin-Bayindir Z, Losada-Barreiro S, Fernández-Bravo S, Bravo-Díaz C. Innovative delivery and release systems for antioxidants and other active substances in the treatment of cancer. Pharmaceuticals. 2023;16:1038.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014;6:e90.

    Article 
    CAS 

    Google Scholar
     

  • Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhushan B, Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J Mater Chem B. 2015;3:4843–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng X, Zhao J, Wang S, Hu L. Research progress of antioxidant nanomaterials for acute pancreatitis. Molecules. 2022;27:7238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh S. Cerium oxide based nanozymes: redox phenomenon at biointerfaces. Biointerphases. 2016;11:04b202.

    Article 
    PubMed 

    Google Scholar
     

  • Feng N, Liu Y, Dai X, Wang Y, Guo Q, Li Q. Advanced applications of cerium oxide based nanozymes in cancer. RSC Adv. 2022;12:1486–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caputo F, Mameli M, Sienkiewicz A, Licoccia S, Stellacci F, Ghibelli L, Traversa E. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci Rep. 2017;7:4636.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Li X, Li B, Wang H, Li M, Huang S, Sun Y, Chen G, Si X, Huang C, et al. Long non-coding RNA ECRAR triggers post-natal myocardial regeneration by activating ERK1/2 signaling. Mol Ther. 2019;27:29–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc. 2013;8:162–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall J, Guo G, Wray J, Eyres I, Nichols J, Grotewold L, Morfopoulou S, Humphreys P, Mansfield W, Walker R, et al. Oct4 and LIF/Stat3 additively induce Krüppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell. 2009;5:597–609.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorski PA, Kho C, Oh JG. Measuring cardiomyocyte contractility and calcium handling in vitro. Methods Mol Biol. 2018;1816:93–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feaster TK, Cadar AG, Wang L, Williams CH, Chun YW, Hempel JE, Bloodworth N, Merryman WD, Lim CC, Wu JC, et al. Matrigel mattress: a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2015;117:995–1000.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium oxide nanoparticles: advances in biodistribution, toxicity, and preclinical exploration. Small. 2020;16: e1907322.

    Article 
    PubMed 

    Google Scholar
     

  • Ściskalska M, Ołdakowska M, Marek G, Milnerowicz H. Changes in the activity and concentration of superoxide dismutase isoenzymes (Cu/Zn SOD, MnSOD) in the blood of healthy subjects and patients with acute pancreatitis. Antioxidants. 2020;9:948.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ilhan M, Turgut S, Turan S, DemirciCekic S, Ergen HA, Korkmaz Dursun G, Mezani B, Karaman O, Yaylim I, Apak MR, Tasan E. The assessment of total antioxidant capacity and superoxide dismutase levels, and the possible role of manganese superoxide dismutase polymorphism in acromegaly. Endocr J. 2018;65:91–9.

    Article 
    PubMed 

    Google Scholar
     

  • Nojima M, Sakauchi F, Mori M, Tamakoshi A, Ito Y, Watanabe Y, Inaba Y, Tajima K, Nakachi K. Relationship of serum superoxide dismutase activity and lifestyle in healthy Japanese adults. Asian Pac J Cancer Prev. 2009;10(Suppl):37–40.

    PubMed 

    Google Scholar
     

  • El Shaer SS, Salaheldin TA, Saied NM, Abdelazim SM. In vivo ameliorative effect of cerium oxide nanoparticles in isoproterenol-induced cardiac toxicity. Exp Toxicol Pathol. 2017;69:435–41.

    Article 
    PubMed 

    Google Scholar
     

  • Jain A, Behera M, Mahapatra C, Sundaresan NR, Chatterjee K. Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an antioxidant and anti-hypertrophic cardiac patch. Mater Sci Eng, C. 2021;118: 111416.

    Article 
    CAS 

    Google Scholar
     

  • Iqbal J, Iqbal A, Mukhtar H, Jahangir K, Mashkoor Y, Zeeshan MH, Nadeem A, Ashraf A, Maqbool S, Sadiq SM. Cardioprotective effects of nanoparticles in cardiovascular diseases: a state of the art review. Curr Probl Cardiol. 2023;48: 101713.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang Y, Lian XL. Heart regeneration with human pluripotent stem cells: prospects and challenges. Bioact Mater. 2020;5:74–81.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46:4218–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh S, Kumar A, Karakoti A, Seal S, Self WT. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst. 2010;6:1813–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh S, Ly A, Das S, Sakthivel TS, Barkam S, Seal S. Cerium oxide nanoparticles at the nano-bio interface: size-dependent cellular uptake. Artif Cells Nanomed Biotechnol. 2018;46:S956-s963.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yılmaz D, Culha M. Discrimination of receptor-mediated endocytosis by surface-enhanced Raman scattering. Langmuir. 2022;38:6281–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16:266–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park S, Choe M, Yeo H, Han H, Kim J, Chang W, Yun S, Lee H, Lee M. Yes-associated protein mediates human embryonic stem cell-derived cardiomyocyte proliferation: involvement of epidermal growth factor receptor signaling. J Cell Physiol. 2018;233:7016–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Y, Wang Q, Gao N, Wu F, Lan F, Zhang F, Jin L, Huang Z, Ge J, Wang H, Wang Y. MircroRNA-10b promotes human embryonic stem cell-derived cardiomyocyte proliferation via novel target gene LATS1. Mol Ther Nucleic Acids. 2020;19:437–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC. Overview of the muscle cytoskeleton. Compr Physiol. 2017;7:891–944.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac sarcomere signaling in health and disease. Int J Mol Sci. 2022;23:16223.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birket MJ, Casini S, Kosmidis G, Elliott DA, Gerencser AA, Baartscheer A, Schumacher C, Mastroberardino PG, Elefanty AG, Stanley EG, Mummery CL. PGC-1α and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function. Stem Cell Rep. 2013;1:560–74.

    Article 
    CAS 

    Google Scholar
     

  • Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, Jones A. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med. 2012;18:1639–42.

    Article 
    PubMed 

    Google Scholar
     

  • Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, Castillo RL. Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients. 2017;9:966.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22:1991–2002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dias TP, Pinto SN, Santos JI, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JMS. Biophysical study of human induced pluripotent stem cell-derived cardiomyocyte structural maturation during long-term culture. Biochem Biophys Res Commun. 2018;499:611–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohgushi M, Matsumura M, Eiraku M, Murakami K, Aramaki T, Nishiyama A, Muguruma K, Nakano T, Suga H, Ueno M, et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell. 2010;7:225–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen G, Hou Z, Gulbranson DR, Thomson JA. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell. 2010;7:240–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863:2977–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villalpando-Rodriguez GE, Gibson SB. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid Med Cell Longev. 2021;2021:9912436.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaygusuz H, Erim FB. Biopolymer-assisted green synthesis of functional cerium oxide nanoparticles. Chem Pap. 2020;74:2357–63.

    Article 
    CAS 

    Google Scholar
     

  • Artini C, Pani M, Carnasciali MM, Buscaglia MT, Plaisier JR, Costa GA. Structural features of Sm- and Gd-doped ceria studied by synchrotron X-ray diffraction and μ-Raman spectroscopy. Inorg Chem. 2015;54:4126–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb). 2010;46:2736–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res. 2009;11:77–89.

    Article 
    CAS 

    Google Scholar
     

  • Dal Magro R, Vitali A, Fagioli S, Casu A, Falqui A, Formicola B, Taiarol L, Cassina V, Marrano CA, Mantegazza F, et al. Oxidative stress boosts the uptake of cerium oxide nanoparticles by changing brain endothelium microvilli pattern. Antioxidants. 2021;10:266.

    Article 

    Google Scholar
     

  • Dowding JM, Song W, Bossy K, Karakoti A, Kumar A, Kim A, Bossy B, Seal S, Ellisman MH, Perkins G, et al. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014;21:1622–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strobel C, Oehring H, Herrmann R, Förster M, Reller A, Hilger I. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis. J Nanopart Res. 2015;17:206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaper J, Meiser E, Stämmler G. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res. 1985;56:377–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556:239–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai DF, Danoviz ME, Wiczer B, Laflamme MA, Tian R. Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cells Int. 2017;2017:5153625.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vassie JA, Whitelock JM, Lord MS. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater. 2017;50:127–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdi Goushbolagh N, Farhood B, Astani A, Nikfarjam A, Kalantari M, Zare MH. Quantitative cytotoxicity, cellular uptake and radioprotection effect of cerium oxide nanoparticles in MRC-5 normal cells and MCF-7 cancerous cells. BioNanoScience. 2018;8:769–77.

    Article 

    Google Scholar
     

  • Heo JS, Han HJ. PKC and MAPKs pathways mediate EGF-induced stimulation of 2-deoxyglucose uptake in mouse embryonic stem cells. Cell Physiol Biochem. 2006;17:145–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao L, Wei L, Liu Y, Ding Y, Liu X, Zhang X, Wang X, Yao Y, Lu J, Wang Q, Hu R. Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells. Biochem Pharmacol. 2017;125:12–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asati A, Santra S, Kaittanis C, Perez JM. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano. 2010;4:5321–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM. The relationship between pH and zeta potential of 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology. 2009;3:276–83.

    Article 
    CAS 

    Google Scholar
     

  • Carvajal S, Perramón M, Casals G, Oró D, Ribera J, Morales-Ruiz M, Casals E, Casado P, Melgar-Lesmes P, Fernández-Varo G, et al. Cerium oxide nanoparticles protect against oxidant injury and interfere with oxidative mediated kinase signaling in human-derived hepatocytes. Int J Mol Sci. 2019;20:5959.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Di Nardo P, Traversa E. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6:3767–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li K, Xie Y, You M, Huang L, Zheng X. Cerium oxide-incorporated calcium silicate coating protects MC3T3-E1 osteoblastic cells from h2o2-induced oxidative stress. Biol Trace Elem Res. 2016;174:198–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu V. Dexrazoxane: a cardioprotectant for pediatric cancer patients receiving anthracyclines. J Pediatr Oncol Nurs. 2015;32:178–84.

    Article 
    PubMed 

    Google Scholar
     

  • Burridge PW, Li YF, Matsa E, Wu H, Ong S-G, Sharma A, Holmström A, Chang AC, Coronado MJ, Ebert AD, et al. Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med. 2016;22:547–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Liu S, Peng J, Cheng S, Zhang Q, Zhang N, Zhou Z, Zhang Y, Zhao Y, Liu T. Biomimetic nanozymes suppressed ferroptosis to ameliorate doxorubicin-induced cardiotoxicity via synergetic effect of antioxidant stress and GPX4 restoration. Nutrients. 2023;15:1090.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Tristan CA, Chen L, Jovanovic VM, Malley C, Chu PH, Ryu S, Deng T, Ormanoglu P, Tao D, et al. A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nat Methods. 2021;18:528–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar