Nanotechnology

Human periodontal ligament stem cell sheets activated by graphene oxide quantum dots repair periodontal bone defects by promoting mitochondrial dynamics dependent osteogenic differentiation | Journal of Nanobiotechnology


  • Wang X, Chen J, Tian W. Strategies of cell and cell-free therapies for periodontal regeneration: the state of the art. Stem Cell Res Ther. 2022;13:536.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Yang X, Chen Y, Zhang J, Gai K, Chen J, Huo F, Guo Q, Guo W, Gou M, Yang B, Tian W. Biomimetic peridontium patches for functional periodontal regeneration. Adv Healthc Mater. 2023;12: e2202169.

    Article 
    PubMed 

    Google Scholar
     

  • Jia L, Xiong Y, Zhang W, Ma X, Xu X. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp Cell Res. 2020;386: 111717.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu W, Liang M. Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells Int. 2015;2015: 972313.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P, Oates TW, Chang X, Xu HHK. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells. 2019;8:537.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hynes K, Menicanin D, Gronthos S, Bartold PM. Clinical utility of stem cells for periodontal regeneration. Periodontol. 2000;2012(59):203–27.


    Google Scholar
     

  • Zhang Y, Xing Y, Jia L, Ji Y, Zhao B, Wen Y, Xu X. An in vitro comparative study of multisource derived human mesenchymal stem cells for bone tissue engineering. Stem Cells Dev. 2018;27:1634–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao C, Nie X, Zhu W, Iqbal J, Xu C, Wang DA. Autologous cell membrane coatings on tissue engineering xenografts for suppression and alleviation of acute host immune responses. Biomaterials. 2020;258: 120310.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamada M, Ishihara K, Ogawa T, Sakurai K. The inhibition of infection by wound pathogens on scaffold in tissue-forming process using N-acetyl cysteine. Biomaterials. 2011;32:8474–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rijal G, Kim BS, Pati F, Ha DH, Kim SW, Cho DW. Robust tissue growth and angiogenesis in large-sized scaffold by reducing H(2)O(2)-mediated oxidative stress. Biofabrication. 2017;9: 015013.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Lan T, Han X, Xu Y, Liao L, Xie L, Yang B, Tian W, Guo W. Improvement of ECM-based bioroot regeneration via N-acetylcysteine-induced antioxidative effects. Stem Cell Res Ther. 2021;12:202.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Qi F, Li Y, Zhou X, Sun H, Zhang W, Liu D, Song XM. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: visible-light-driven photocatalyst based on energy band engineering. J Colloid Interface Sci. 2017;498:105–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu B, Xie J, Ma H, Zhang X, Pan Y, Lv J, Ge H, Ren N, Su H, Xie X, Huang L, Huang W. From graphite to graphene oxide and graphene oxide quantum dots. Small. 2017. https://doi.org/10.1002/smll.201601001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lecaros RLG, Deseo KM, Hung WS, Tayo LL, Hu CC, An QF, Tsai HA, Lee KR, Lai JY. Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane. J Membr Sci. 2019;576:36–47.

    Article 
    CAS 

    Google Scholar
     

  • Sarkar K, Bank S, Chatterjee A, Dutta K, Das A, Chakraborty S, Paul N, Sarkar J, De S, Ghosh S, Acharyya K, Chattopadhyay D, Das M. Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation. J Nanobiotechnol. 2023;21:246.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Zhang X, Jiang J, Wang Y, Jiang H, Zhang J, Nie X, Liu B. Systematic assessment of the toxicity and potential mechanism of graphene derivatives in vitro and in vivo. Toxicol Sci. 2019;167:269–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gliniak J, Lin JH, Chen YT, Li CR, Jokar E, Chang CH, Peng CS, Lin JN, Lien WH, Tsai HM, Wu TK. Sulfur-doped graphene oxide quantum dots as photocatalysts for hydrogen generation in the aqueous phase. Chemsuschem. 2017;10:3260–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fathizadeh M, Tien HN, Khivantsev K, Song ZN, Zhou FL, Yu M. Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination. 2019;451:125–32.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Cheng Y, Zhu L, Lee ST, Liao F, Shao M. The surface polarized graphene oxide quantum dot films for flexible nanogenerators. Sci Rep. 2016;6:32943.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Liu H, Yu Y, Ma L, Liu C, Miao L. Graphene oxide quantum dots-induced mineralization via the reactive oxygen species-dependent autophagy pathway in dental pulp stem cells. J Biomed Nanotechnol. 2020;16:965–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, Zheng Y, Wang C, Li P, Xu D, Zhao W. Concentration-dependent cellular uptake of graphene oxide quantum dots promotes the odontoblastic differentiation of dental pulp cells via the AMPK/mTOR pathway. ACS Omega. 2023;8:5393–405.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Zhao Q, Chen J, Liu J, Lin J, Lu J, Li W, Yu D, Zhao W. Graphene oxide quantum dots promote osteogenic differentiation of stem cells from human exfoliated deciduous teeth via the Wnt/beta-Catenin signaling pathway. Stem Cells Int. 2021;2021:8876745.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu D, Wang C, Wu J, Fu Y, Li S, Hou W, Lin L, Li P, Yu D, Zhao W. Effects of low-concentration graphene oxide quantum dots on improving the proliferation and differentiation ability of bone marrow mesenchymal stem cells through the Wnt/beta-catenin signaling pathway. ACS Omega. 2022;7:13546–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li P, Di Stasio F, Eda G, Fenwick O, McDonnell SO, Anderson HL, Chhowalla M, Cacialli F. Luminescent properties of a water-soluble conjugated polymer incorporating graphene-oxide quantum dots. ChemPhysChem. 2015;16:1258–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang D, Chen Y, Li N, Li W, Wang Z, Zhu J, Zhang H, Liu B, Xu S. Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS ONE. 2015;10: e0144906.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akbarzade S, Chamsaz M, Rounaghi GH, Ghorbani M. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry. Anal Bioanal Chem. 2018;410:429–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: a review from a mitochondrial perspective. Acta Biomater. 2023;164:1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo Y, Chi X, Wang Y, Heng BC, Wei Y, Zhang X, Zhao H, Yin Y, Deng X. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 2020;11:245.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wada J, Nakatsuka A. Mitochondrial dynamics and mitochondrial dysfunction in diabetes. Acta Med Okayama. 2016;70:151–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Suh J, Kim NK, Shim W, Lee SH, Kim HJ, Moon E, Sesaki H, Jang JH, Kim JE, Lee YS. Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis. Cell Metab. 2023;35:345-60.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan MC, Tang XY, Li J, Gao P, Wang F, Shen MJ, Gu JT, Tay F, Chen JH, Niu LN, Xiao YH, Jiao K. Upregulation of mitochondrial dynamics is responsible for osteogenic differentiation of mesenchymal stem cells cultured on self-mineralized collagen membranes. Acta Biomater. 2021;136:137–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rojas-Andrade MD, Nguyen TA, Mistler WP, Armas J, Lu JE, Roseman G, Hollingsworth WR, Nichols F, Millhauser GL, Ayzner A, Saltikov C, Chen S. Antimicrobial activity of graphene oxide quantum dots: impacts of chemical reduction. Nanoscale Adv. 2020;2:1074–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Y, Zhang B, Fan Z. Aptamer based fluorometric sulfamethazine assay based on the use of graphene oxide quantum dots. Mikrochim Acta. 2018;185:163.

    Article 
    PubMed 

    Google Scholar
     

  • Kim SG. A cell-based approach to dental pulp regeneration using mesenchymal stem cells: a scoping review. Int J Mol Sci. 2021;22:4357.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivandzade F, Cucullo L. Regenerative stem cell therapy for neurodegenerative diseases: an overview. Int J Mol Sci. 2021;22:2153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ai T, Zhang J, Wang X, Zheng X, Qin X, Zhang Q, Li W, Hu W, Lin J, Chen F. DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells. Signal Transduct Target Ther. 2018;3:1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28:974–85.

    Article 
    PubMed 

    Google Scholar
     

  • Sun YY, Zheng YP, Chen J, Zhang WL, Tang NJ, Du YW. Intrinsic magnetism of monolayer graphene oxide quantum dots. Appl Phys Lett. 2016;108: 033105.

    Article 

    Google Scholar
     

  • Liu Y, Xu Y, Geng X, Huo Y, Chen D, Sun K, Zhou G, Chen B, Tao K. Synergistic targeting and efficient photodynamic therapy based on graphene oxide quantum dot-upconversion nanocrystal hybrid nanoparticles. Small. 2018;14: e1800293.

    Article 
    PubMed 

    Google Scholar
     

  • Choi SY, Baek SH, Chang SJ, Song Y, Rafique R, Lee KT, Park TJ. Synthesis of upconversion nanoparticles conjugated with graphene oxide quantum dots and their use against cancer cell imaging and photodynamic therapy. Biosens Bioelectron. 2017;93:267–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan J, Zhang Z, Wang Y, Lin S, Yang S. Photo-responsive degradable hollow mesoporous organosilica nanoplatforms for drug delivery. J Nanobiotechnol. 2020;18:91.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Liu F, Wang C, Xin X, Liu J, Guo S, Zhang J. Effect of lateral size of graphene quantum dots on their properties and application. ACS Appl Mater Interfaces. 2016;8:2104–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruijtenberg S, van den Heuvel S. Coordinating cell proliferation and differentiation: antagonism between cell cycle regulators and cell type-specific gene expression. Cell Cycle. 2016;15:196–212.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev. 2017;117:11476–521.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim MH, Jeung IC, Jeong J, Yoon SJ, Lee SH, Park J, Kang YS, Lee H, Park YJ, Lee HG, Lee SJ, Han BS, Song NW, Lee SC, Kim JS, Bae KH, Min JK. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases. Acta Biomater. 2016;46:191–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Yang C, Yang D, Shao Z, Hu Y, Chen J, Yuwen L, Weng L, Luo Z, Wang L. Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. Phys Chem Chem Phys. 2018;20:17262–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olteanu D, Filip A, Socaci C, Biris AR, Filip X, Coros M, Rosu MC, Pogacean F, Alb C, Baldea I, Bolfa P, Pruneanu S. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids Surf B Biointerfaces. 2015;136:791–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann M, Plutecka A, Rychlewska U, Kucybala Z, Paczkowski J, Pyszka I. New type of bonding formed from an overlap between pi aromatic and pi C=O molecular orbitals stabilizes the coexistence in one molecule of the ionic and neutral meso-ionic forms of imidazopyridine. J Phys Chem A. 2005;109:4568–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu L, Dai Y, Wang Z, Zhao J, Li F, White JC, Xing B. Graphene quantum dots in alveolar macrophage: uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Part Fibre Toxicol. 2018;15:45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren N, Li J, Qiu J, Yan M, Liu H, Ji D, Huang J, Yu J, Liu H. Growth and accelerated differentiation of mesenchymal stem cells on graphene-oxide-coated titanate with dexamethasone on surface of titanium implants. Dent Mater. 2017;33:525–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee WC, Lim CH, Shi H, Tang LA, Wang Y, Lim CT, Loh KP. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5:7334–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and beta-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4:117.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang JW, Hsieh KY, Kumar PV, Cheng SJ, Lin YR, Shen YC, Chen GY. Enhanced osteogenic differentiation of stem cells on phase-engineered graphene oxide. ACS Appl Mater Interfaces. 2018;10:12497–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei M, Li S, Le W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnol. 2017;15:75.

    Article 

    Google Scholar
     

  • Shen ZQ, Ye HL, Yi X, Li Y. Membrane wrapping efficiency of elastic nanoparticles during endocytosis: size and shape matter. ACS Nano. 2019;13:215–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan Z, Yang X, Lynch I, Cui F. Comparative evaluation of the mechanisms of toxicity of graphene oxide and graphene oxide quantum dots to blue-green algae Microcystis aeruginosa in the aquatic environment. J Hazard Mater. 2022;425: 127898.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawecki F, Clafshenkel WP, Fortin M, Auger FA, Fradette J. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies. Adv Healthc Mater. 2018;7: e1700919.

    Article 
    PubMed 

    Google Scholar
     

  • Jia W, He W, Wang G, Goldman J, Zhao F. Enhancement of lymphangiogenesis by human mesenchymal stem cell sheet. Adv Healthc Mater. 2022;11: e2200464.

    Article 
    PubMed 

    Google Scholar
     

  • You Q, Lu M, Li Z, Zhou Y, Tu C. Cell sheet technology as an engineering-based approach to bone regeneration. Int J Nanomed. 2022;17:6491–511.

    Article 
    CAS 

    Google Scholar
     

  • Pang L, Jin H, Lu Z, Xie F, Shen H, Li X, Zhang X, Jiang X, Wu L, Zhang M, Zhang T, Zhai Y, Zhang Y, Guan H, Su J, Li M, Gao J. Treatment with mesenchymal stem cell-derived nanovesicle-containing gelatin methacryloyl hydrogels alleviates osteoarthritis by modulating chondrogenesis and macrophage polarization. Adv Healthc Mater. 2023;12: e2300315.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Z, Li X, Gan X, Wei M, Wang C, Yang G, Zhao Y, Zhu Z, Wang Z. Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. J Nanobiotechnol. 2023;21:119.

    Article 
    CAS 

    Google Scholar
     

  • Ludikhuize MC, Meerlo M, Gallego MP, Xanthakis D, Burgaya Julia M, Nguyen NTB, Brombacher EC, Liv N, Maurice MM, Paik JH, Burgering BMT, Rodriguez Colman MJ. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/Notch axis. Cell Metab. 2020;32:889-900.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakrabarty RP, Chandel NS. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell. 2021;28:394–408.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Gao Z, Chen Y, Guan MX. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell. 2017;8:439–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21:204–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez-Arago M, Garcia-Bermudez J, Martinez-Reyes I, Santacatterina F, Cuezva JM. Degradation of IF1 controls energy metabolism during osteogenic differentiation of stem cells. EMBO Rep. 2013;14:638–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forni MF, Peloggia J, Trudeau K, Shirihai O, Kowaltowski AJ. Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cells. 2016;34:743–55.

    Article 
    CAS 
    PubMed 

    Google Scholar