Nanotechnology

Immunosuppressive microvesicles-mimetic derived from tolerant dendritic cells to target T-lymphocytes for inflammation diseases therapy | Journal of Nanobiotechnology


  • Li Z, Feng Y, Zhang S, Li T, Li H, Wang D, et al. A multifunctional nanoparticle mitigating cytokine storm by scavenging multiple inflammatory mediators of sepsis. ACS Nano. 2023;17(9):8551–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ha E, Bang SY, Lim J, Yun JH, Kim JM, Bae JB, et al. Genetic variants shape rheumatoid arthritis-specific transcriptomic features in CD4(+) T cells through differential DNA methylation, explaining a substantial proportion of heritability. Ann Rheum Dis. 2021;80(7):876–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suthen S, Lim CJ, Nguyen P, Dutertre CA, Lai H, Wasser M, et al. Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC. Hepatology. 2022;76(5):1329–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, Wang M, Zeng J, Mao Y, Qin R, Deng J, et al. Sequence variation of candida albicans Sap2 enhances fungal pathogenicity via complement evasion and macrophage M2-like phenotype induction. Adv Sci. 2023;10(20):e2206713.

    Article 

    Google Scholar
     

  • Passeri L, Andolfi G, Bassi V, Russo F, Giacomini G, Laudisa C, et al. Tolerogenic IL-10-engineered dendritic cell-based therapy to restore antigen-specific tolerance in T cell mediated diseases. J Autoimmun. 2023;138:103051.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med. 2009;206(3):549–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF, et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ilt4/hla-g pathway. Blood. 2010;116(6):935–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu CC, Ali N, Karagiannis P, Di Meglio P, Skowera A, Napolitano L, et al. Resident CD141 (bdca3) + dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med. 2012;209(5):935–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colonna M, Navarro F, Bellon T, Llano M, Garcia P, Samaridis J, et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med. 1997;186(11):1809–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fanger NA, Maliszewski CR, Schooley K, Griffith TS. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (trail). J Exp Med. 1999;190(8):1155–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min Z, Zeng Y, Zhu T, Cui B, Mao R, Jin M, et al. Lipopolysaccharide-activated bone marrow-derived dendritic cells suppress allergic airway inflammation by ameliorating the immune microenvironment. Front Immunol. 2021;12:595369.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Hou C, Yang N, Yang Y, Chen Y, Kong D, et al. Regulatory effect of jak2/stat3 on the immune function of endotoxin-tolerant dendritic cells and its involvement in acute liver failure. J Clin Transl Hepatol. 2022;10(5):879–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care. 2011;34(9):2026–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N, et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci Transl Med. 2015;7(290):r287–90.

    Article 

    Google Scholar
     

  • Bell GM, Anderson AE, Diboll J, Reece R, Eltherington O, Harry RA, et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis. 2017;76(1):227–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zubizarreta I, Florez-Grau G, Vila G, Cabezon R, Espana C, Andorra M, et al. Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proc Natl Acad Sci USA. 2019;116(17):8463–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blazar BR, MacDonald K, Hill GR. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy. Blood. 2018;131(24):2651–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest. 2016;126(4):1152–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.

    Article 
    PubMed 

    Google Scholar
     

  • Tang TT, Wang B, Lv LL, Liu BC. Extracellular vesicle-based nanotherapeutics: emerging frontiers in anti-inflammatory therapy. Theranostics. 2020;10(18):8111–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–710.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JR, Park BW, Kim J, Choo YW, Kim HY, Yoon JK, et al. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair. Sci Adv. 2020;6(18):z952.

    Article 

    Google Scholar
     

  • Zhang G, Huang X, Xiu H, Sun Y, Chen J, Cheng G, et al. Extracellular vesicles: natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. J Extracell Vesicles. 2020;10(2):e12030.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Zhuang X, Greene KS, Si H, Antonyak MA, Druso JE, et al. Cdc42 functions as a regulatory node for tumour-derived microvesicle biogenesis. J Extracell Vesicles. 2021;10(3):e12051.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci USA. 2011;108(12):4852–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Q, Zhang C, Lum D, Druso JE, Blank B, Wilson KF, et al. A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun. 2017;8:14450.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan J, Lee CS, Kim S, Chen C, Aghaloo T, Lee M. Generation of small RNA-modulated exosome mimetics for bone regeneration. ACS Nano. 2020;14(9):11973–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu F, Fei Z, Dai H, Xu J, Fan Q, Shen S, et al. Mesenchymal stem cell-derived extracellular vesicles with high PD-L1 expression for autoimmune diseases treatment. Adv Mater. 2022;34(1):e2106265.

    Article 
    PubMed 

    Google Scholar
     

  • Tsai HI, Wu Y, Liu X, Xu Z, Liu L, Wang C, et al. Engineered small extracellular vesicles as a fgl1/PD-L1 dual-targeting delivery system for alleviating immune rejection. Adv Sci. 2022;9(3):e2102634.

    Article 

    Google Scholar
     

  • Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lasser C, Segaliny AI, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano. 2019;13(6):6670–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 2020;8(2).

  • Manni G, Mondanelli G, Scalisi G, Pallotta MT, Nardi D, Padiglioni E, et al. Pharmacologic induction of endotoxin tolerance in dendritic cells by L-kynurenine. Front Immunol. 2020;11:292.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan Z, Zhu P, Zhu Y, Wu K, Li CY, Cheng H. Engineering long-circulating nanomaterial delivery systems. Curr Opin Biotechnol. 2020;66:131–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao P, Wang J, Zhao Z, Liu X, Sun X, Wang D, et al. Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. Nano Lett. 2021;21(5):2094–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruan S, Erwin N, He M. Light-induced high-efficient cellular production of immune functional extracellular vesicles. J Extracell Vesicles. 2022;11(3):e12194.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou L, Park JJ, Zheng Q, Dong Z, Mi Q. MicroRNAs are key regulators controlling iNKT and regulatory T-cell development and function. Cell Mol Immunol. 2011;8(5):380–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maul J, Alterauge D, Baumjohann D. MicroRNA-mediated regulation of T follicular helper and T follicular regulatory cell identity. Immunol Rev. 2019;288(1):97–111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan W, Zhu S, Dai D, Liu Z, Li D, Li B, et al. MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nat Commun. 2015;6:7096.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Chen C, Fu H, Yu J, Sun Y, Huang H, et al. MicroRNA-125a-loaded polymeric nanoparticles alleviate systemic lupus erythematosus by restoring effector/regulatory T cells balance. ACS Nano. 2020;14(4):4414–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity. 2009;30(1):80–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu LF, Gasteiger G, Yu IS, Chaudhry A, Hsin JP, Lu Y, et al. A single miRNA-mRNA interaction affects the immune response in a context- and cell-type-specific manner. Immunity. 2015;43(1):52–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Gao Y. Pancreatic cancer cell-derived microRNA-155-5p-containing extracellular vesicles promote immune evasion by triggering EHF-dependent activation of AKT/NF-kappab signaling pathway. Int Immunopharmacol. 2021;100:107990.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mycko MP, Cichalewska M, Cwiklinska H, Selmaj KW. MiR-155-3p drives the development of autoimmune demyelination by regulation of heat shock protein 40. J Neurosci. 2015;35(50):16504–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escobar TM, Kanellopoulou C, Kugler DG, Kilaru G, Nguyen CK, Nagarajan V, et al. MiR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression. Immunity. 2014;40(6):865–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian W, Cao Y. An overview of the effects and mechanisms of m6 a methylation on innate immune cells in sepsis. Front Immunol. 2022;13:1041990.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu KK, Kuo CC, Yet SF, Lee CM, Liou JY. 5-methoxytryptophan: an arsenal against vascular injury and inflammation. J Biomed Sci. 2020;27(1):79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin S, Chen H, Li Y, Zhong H, Sun W, Wang J, et al. Maresin 1 improves the Treg/Th17 imbalance in rheumatoid arthritis through miR-21. Ann Rheum Dis. 2018;77(11):1644–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren S, Liu H, Wang X, Bi J, Lu S, Zhu C, et al. Acupoint nanocomposite hydrogel for simulation of acupuncture and targeted delivery of triptolide against rheumatoid arthritis. J Nanobiotechnol. 2021;19(1):409.

    Article 
    CAS 

    Google Scholar
     

  • Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, et al. Phosphorylation of Foxp3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med. 2013;19(3):322–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Wang Y, Liu C, He J, He X, Zhang X, et al. Treg-targeted efficient-inducible platform for collagen-induced arthritis treatment. Mater Today Bio. 2023;19:100557.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang SN, Yang NB, Ni SL, Dong JZ, Shi CW, Li SS, et al. Splenic Cd11c(low)CD45RB(high) dendritic cells derived from endotoxin-tolerant mice attenuate experimental acute liver failure. Sci Rep. 2016;6:33206.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin J, Lv J, Yu S, Chen Y, Wang H, Chen J. Transcript engineered extracellular vesicles alleviate alloreactive dynamics in renal transplantation. Adv Sci. 2022;9(31):e2202633.

    Article 

    Google Scholar
     

  • Zhang Y, Cai Z, Shen Y, Lu Q, Gao W, Zhong X, et al. Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction. J Nanobiotechnol. 2021;19(1):271.

    Article 
    CAS 

    Google Scholar
     

  • Zhang P, Liu RT, Du T, Yang CL, Liu YD, Ge MR, et al. Exosomes derived from statin-modified bone marrow dendritic cells increase thymus-derived natural regulatory T cells in experimental autoimmune myasthenia gravis. J Neuroinflammation. 2019;16(1):202.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang M, Liu X, Ye H, Zhao X, Zhao J, Liu Y, et al. Metabolic defects in splenic B cell compartments from patients with liver cirrhosis. Cell Death Dis. 2020;11(10):915.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Gao S, Shi S, Xiao D, Peng S, Gao Y, et al. Tetrahedral framework nucleic acid-based delivery of resveratrol alleviates insulin resistance: from innate to adaptive immunity. Nanomicro Lett. 2021;13(1):86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei F, Su Y, Quan Y, Li X, Zou Q, Zhang L, et al. Anticoagulants enhance molecular and cellular immunotherapy of cancer by improving tumor microcirculation structure and function and redistributing tumor infiltrates. Clin Cancer Res. 2023;29(13):2525–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xin Q, Li J, Dang J, Bian X, Shan S, Yuan J, et al. MiR-155 deficiency ameliorates autoimmune inflammation of systemic lupus erythematosus by targeting S1pr1 in Faslpr/lpr mice. J Immunol. 2015;194(11):5437–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bluml S, Bonelli M, Niederreiter B, Puchner A, Mayr G, Hayer S, et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 2011;63(5):1281–88.

    Article 
    PubMed 

    Google Scholar
     

  • O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 2010;33(4):607–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Wan X, Yuan Y, Huang J, Jiang Y, Zhao K, et al. Opposite effects of miR-155 in the initial and later stages of lipopolysaccharide-induced inflammatory response. J Zhejiang Univ Sci B. 2021;22(7):590–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Zhang C, Bai X, Xiao C, Dang E, Wang G. Hsa_circ_0003738 inhibits the suppressive function of Tregs by targeting miR-562/IL-17a and miR-490-5p/IFN-gamma signaling pathway. Mol Ther Nucleic Acids. 2020;21:1111–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skwarczynski M, Zhao G, Boer JC, Ozberk V, Azuar A, Cruz JG, et al. Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Sci Adv. 2020;6(5):x2285.

    Article 

    Google Scholar
     

  • Kozomara A, Birgaoanu M, Griffiths-Jones S. Mirbase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar