Nanotechnology

Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia | Journal of Nanobiotechnology


  • Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377:1904–5.

    Article 
    PubMed 

    Google Scholar
     

  • Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet. 2021;398:622–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herold S, Becker C, Ridge KM, Budinger GR. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J. 2015;45:1463–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Camporota L, Cronin JN, Busana M, Gattinoni L, Formenti F. Pathophysiology of coronavirus-19 disease acute lung injury. Curr Opin Crit Care. 2022;28:9–16.

    Article 
    PubMed 

    Google Scholar
     

  • Malainou C, Abdin SM, Lachmann N, Matt U, Herold S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting. J Clin Invest 2023; 133.

  • Aegerter H, Lambrecht BN, Jakubzick CV. Biology of Lung macrophages in health and disease. Immunity. 2022;55:1564–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neupane AS, Willson M, Chojnacki AK, Vargas ESCF, Morehouse C, Carestia A, Keller AE, Peiseler M, DiGiandomenico A, Kelly MM, et al. Patrolling alveolar macrophages conceal Bacteria from the Immune System to maintain homeostasis. Cell. 2020;183:110–e125111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider C, Nobs SP, Heer AK, Kurrer M, Klinke G, van Rooijen N, Vogel J, Kopf M. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 2014;10:e1004053.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen ST, Park MD, Del Valle DM, Buckup M, Tabachnikova A, Thompson RC, Simons NW, Mouskas K, Lee B, Geanon D, et al. A shift in lung macrophage composition is associated with COVID-19 severity and recovery. Sci Transl Med. 2022;14:eabn5168.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Piattini F, Pohlmeier L, Feng Q, Rehrauer H, Kopf M. Monocyte-derived alveolar macrophages autonomously determine severe outcome of respiratory viral infection. Sci Immunol. 2022;7:eabj5761.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong T, Chen X, Xu H, Song Y, Wang H, Gao Y, Wang J, Du R, Lou H, Dong T. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases. Pharmacol Ther. 2022;239:108208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryan EM, Sadiku P, Coelho P, Watts ER, Zhang A, Howden AJM, Sanchez-Garcia MA, Bewley M, Cole J, McHugh BJ, et al. NRF2 activation reprograms defects in oxidative metabolism to restore macrophage function in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2023;207:998–1011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu B, Wei X, Narasimhan H, Qian W, Zhang R, Cheon IS, Wu Y, Li C, Jones RG, Kaplan MH, et al. Inhibition of the mitochondrial pyruvate carrier simultaneously mitigates hyperinflammation and hyperglycemia in COVID-19. Sci Immunol. 2023;8:eadf0348.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18:759–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutra Silva J, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF, O’Kane C, Krasnodembskaya AD. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J. 2021; 58.

  • Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov. 2023;22:449–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, Tollemeto M, Wacker MG, Czarny B, Pastorin G. Plant-derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles. 2022;11:e12283.

    Article 
    PubMed 

    Google Scholar
     

  • Li A, Li D, Gu Y, Liu R, Tang X, Zhao Y, Qi F, Wei J, Liu J. Plant-derived nanovesicles: further exploration of biomedical function and application potential. Acta Pharm Sin B. 2023;13:3300–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29:13–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar A, Sundaram K, Teng Y, Mu J, Sriwastva MK, Zhang L, Hood JL, Yan J, Zhang X, Park JW, et al. Ginger nanoparticles mediated induction of Foxa2 prevents high-fat diet-induced insulin resistance. Theranostics. 2022;12:1388–403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han X, Wei Q, Lv Y, Weng L, Huang H, Wei Q, Li M, Mao Y, Hua D, Cai X, et al. Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Mol Ther. 2022;30:327–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang R, Jia B, Su D, Li M, Xu Z, He C, Huang Y, Fan H, Chen H, Cheng F. Plant exosomes fused with engineered mesenchymal stem cell-derived nanovesicles for synergistic therapy of autoimmune skin disorders. J Extracell Vesicles. 2023;12:e12361.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J, Deng Z, Luo C, et al. Plant-derived exosomal MicroRNAs shape the gut microbiota. Cell Host Microbe. 2018;24:637–e652638.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao Q, Zhao W, Wu C, Wang X, Chen J, Shi X, Sha S, Li J, Liang X, Yang Y, et al. Lemon-Derived Extracellular vesicles Nanodrugs enable to efficiently overcome Cancer Multidrug Resistance by endocytosis-triggered Energy Dissipation and Energy Production reduction. Adv Sci (Weinh). 2022;9:e2105274.

    Article 
    PubMed 

    Google Scholar
     

  • Miller LH, Su X. Artemisinin: discovery from the Chinese herbal garden. Cell. 2011;146:855–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen S, Liao Q, Lyu M, Wong YK, Zhang X, Zhou J, Ma N, Wang J. The potential of artemisinins as anti-obesity agents via modulating the immune system. Pharmacol Ther. 2020;216:107696.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B. 2021;11:322–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Wang Y, You F, Xue J. Novel use for old drugs: the emerging role of artemisinin and its derivatives in fibrosis. Pharmacol Res. 2020;157:104829.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • An J, Minie M, Sasaki T, Woodward JJ, Elkon KB. Antimalarial drugs as Immune modulators: New mechanisms for Old drugs. Annu Rev Med. 2017;68:317–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shoaib A, Azmi L, Shukla I, Alqahtani SS, Alsarra IA, Shakeel F. Properties of Ethnomedicinal Plants and their bioactive compounds: possible use for COVID-19 Prevention and Treatment. Curr Pharm Des. 2021;27:1579–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baggieri M, Gioacchini S, Borgonovo G, Catinella G, Marchi A, Picone P, Vasto S, Fioravanti R, Bucci P, Kojouri M, et al. Antiviral, virucidal and antioxidant properties of Artemisia annua against SARS-CoV-2. Biomed Pharmacother. 2023;168:115682.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adhikari B, Marasini BP, Rayamajhee B, Bhattarai BR, Lamichhane G, Khadayat K, Adhikari A, Khanal S, Parajuli N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: a review. Phytother Res. 2021;35:1298–312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014;289:22258–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M, Huber KVM, Schmitner N, Kimmel RA, Romanov RA, et al. Artemisinins Target GABA(A) receptor signaling and impair alpha cell identity. Cell. 2017;168:86–e100115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Vogelzang A, Miyajima M, Sugiura Y, Wu Y, Chamoto K, Nakano R, Hatae R, Menzies RJ, Sonomura K, et al. B cell-derived GABA elicits IL-10(+) macrophages to limit anti-tumour immunity. Nature. 2021;599:471–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang D, Wang Y, Thompson JW, Yin T, Alexander PB, Qin D, Mudgal P, Wu H, Liang Y, Tan L, et al. Cancer-cell-derived GABA promotes beta-catenin-mediated tumour growth and immunosuppression. Nat Cell Biol. 2022;24:230–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao Y, Fan L, Bin P, Zhu C, Chen Q, Cai Y, Duan J, Cai Q, Han W, Ding S, et al. GABA signaling enforces intestinal germinal center B cell differentiation. Proc Natl Acad Sci U S A. 2022;119:e2215921119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jembrek MJ, Vlainic J. GABA receptors: pharmacological potential and pitfalls. Curr Pharm Des. 2015;21:4943–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu FF, Su P, Liu F, Daskalakis ZJ. Activation of GABA(B) receptors inhibits protein kinase B/glycogen synthase kinase 3 signaling. Mol Brain. 2012;5:41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, McLean C, Pech U, Li KW, Armstrong JD, Giangrande A, Callaerts P, et al. Aralar sequesters GABA into hyperactive mitochondria, causing Social Behavior deficits. Cell. 2020;180:1178–e11971120.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang S, Liu L, Wang T, Cannon M, Lin P, Fan TW, Scott DA, Wu HJ, Lane AN, Wang R. GAB functions as a bioenergetic and signalling gatekeeper to control T cell inflammation. Nat Metab. 2022;4:1322–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min B, Grant-Orser A, Johannson KA. Peripheral blood monocyte count and outcomes in patients with interstitial lung disease: a systematic review and meta-analysis. Eur Respir Rev 2023; 32.

  • Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, Shikatani EA, El-Maklizi M, Williams JW, Robins L, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol. 2021;19:528–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, Kaewpreedee P, Perera R, Poon LLM, Nicholls JM, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583:834–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milross L, Majo J, Cooper N, Kaye PM, Bayraktar O, Filby A, Fisher AJ. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2022;10:95–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan S, Yin X, Meng X, Chan JF, Ye ZW, Riva L, Pache L, Chan CC, Lai PM, Chan CC, et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature. 2021;593:418–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Zhu W, Jin Q, Pan F, Zhu J, Liu Y, Chen L, Shen J, Yang Y, Chen Q, Liu Z. Inhalable nanocatchers for SARS-CoV-2 inhibition. Proc Natl Acad Sci U S A. 2021; 118.

  • Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, Qi F, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583:830–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He W, Chen CJ, Mullarkey CE, Hamilton JR, Wong CK, Leon PE, Uccellini MB, Chromikova V, Henry C, Hoffman KW, et al. Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza a virus in mice. Nat Commun. 2017;8:846.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, Ni Choileain O, Clarke J, O’Connor E, Hogan G, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020;202:812–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honzke K, Obermayer B, Mache C, Fatykhova D, Kessler M, Dokel S, Wyler E, Baumgardt M, Lowa A, Hoffmann K et al. Human lungs show limited permissiveness for SARS-CoV-2 due to scarce ACE2 levels but virus-induced expansion of inflammatory macrophages. Eur Respir J. 2022; 60.

  • Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26:842–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, Katsyv I, Rendeiro AF, Amin AD, Schapiro D, et al. A molecular single-cell lung atlas of lethal COVID-19. Nature. 2021;595:114–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Li S, Huang B. Alveolar macrophages: Achilles’ heel of SARS-CoV-2 infection. Signal Transduct Target Ther. 2022;7:242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aegerter H, Kulikauskaite J, Crotta S, Patel H, Kelly G, Hessel EM, Mack M, Beinke S, Wack A. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat Immunol. 2020;21:145–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42:406–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv N, Zhao Y, Liu X, Ye L, Liang Z, Kang Y, Dong Y, Wang W, Kolliputi N, Shi L. Dysfunctional telomeres through mitostress-induced cGAS/STING activation to aggravate immune senescence and viral pneumonia. Aging Cell. 2022;21:e13594.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moriyama M, Koshiba T, Ichinohe T, Influenza. A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun. 2019;10:4624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao X, Zhu B, Wu Y, Li C, Zhou X, Tang J, Sun J. TFAM-Dependent mitochondrial metabolism is required for alveolar macrophage maintenance and homeostasis. J Immunol. 2022;208:1456–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desdin-Mico G, Soto-Heredero G, Aranda JF, Oller J, Carrasco E, Gabande-Rodriguez E, Blanco EM, Alfranca A, Cusso L, Desco M, et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science. 2020;368:1371–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang Y, Zhang H, Zhao Y, Wang Y, Wang W, He Y, Zhang W, Zhang W, Zhu X, Zhou Y, et al. Telomere Dysfunction disturbs macrophage mitochondrial metabolism and the NLRP3 inflammasome through the PGC-1alpha/TNFAIP3 Axis. Cell Rep. 2018;22:3493–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xian L, Yu G, Wei Y, Rufian JS, Li Y, Zhuang H, Xue H, Morcillo RJL, Macho AP. A bacterial effector protein hijacks Plant Metabolism to Support Pathogen Nutrition. Cell Host Microbe. 2020;28:548–e557547.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun J, Madan R, Karp CL, Braciale TJ. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat Med. 2009;15:277–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng H, Wang L, Yang B, Li D, Wang X, Liu X, Tian N, Huang Q, Feng R, Wang Z, et al. Cutting Edge: inhibition of glycogen synthase kinase 3 activity induces the generation and enhanced suppressive function of human IL-10(+) FOXP3(+)-Induced Regulatory T cells. J Immunol. 2020;205:1497–502.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoue KI, Sagawa T, Takano H. Role of IL-6 in severe inflammation. Am J Respir Crit Care Med. 2021;203:140–1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton FW, Thomas M, Arnold D, Palmer T, Moran E, Mentzer AJ, Maskell N, Baillie K, Summers C, Hingorani A, et al. Therapeutic potential of IL6R blockade for the treatment of sepsis and sepsis-related death: a mendelian randomisation study. PLoS Med. 2023;20:e1004174.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang K, Chen Z, Gao J, Shi W, Li L, Jiang S, Hu H, Liu Z, Xu D, Wu L. The key roles of GSK-3beta in regulating mitochondrial activity. Cell Physiol Biochem. 2017;44:1445–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akk G, Shin DJ, Germann AL, Steinbach JH. GABA type a receptor activation in the Allosteric Coagonist Model Framework: relationship between EC(50) and basal activity. Mol Pharmacol. 2018;93:90–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheong DHJ, Tan DWS, Wong FWS, Tran T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res. 2020;158:104901.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna S, Augustin Y, Wang J, Xu C, Staines HM, Platteeuw H, Kamarulzaman A, Sall A, Kremsner P. Repurposing antimalarials to tackle the COVID-19 pandemic. Trends Parasitol. 2021;37:8–11.

    Article 
    CAS 
    PubMed 

    Google Scholar