Nanotechnology

Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections


  • Antimicrobial Resistance and Primary Health Care (World Health Organization, 2018).

  • Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solomon, S. L. & Oliver, K. B. Antibiotic resistance threats in the United States: stepping back from the brink. Am. Fam. Physician 89, 938–941 (2014).

    PubMed 

    Google Scholar
     

  • Daum, R. S. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N. Engl. J. Med. 357, 380–390 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeLeo, F. R., Otto, M., Kreiswirth, B. N. & Chambers, H. F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557–1568 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeLeo, F. R. & Chambers, H. F. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J. Clin. Invest. 119, 2464–2474 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, E., Smith, D. L. & Laxminarayan, R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis. 13, 1840–1846 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antibiotic Resistance Threats in the United States, 2019 (US Department of Health and Human Services, Centres for Disease Control and Prevention, 2019).

  • Piddock, L. J. The crisis of no new antibiotics—what is the way forward? Lancet Infect. Dis. 12, 249–253 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol Rev. 24, 71–109 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis (World Health Organization, 2022).

  • Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deresinski, S. & Herrera, V. Immunotherapies for Staphylococcus aureus: current challenges and future prospects. Infect. Control Hospital Epidemiol. 31, S45–S47 (2010).

    Article 

    Google Scholar
     

  • Schaffer, A. C. & Lee, J. C. Vaccination and passive immunisation against Staphylococcus aureus. Int. J. Antimicrob. Agents 32, S71–S78 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, S. D. & DeLeo, F. R. A MRSA-terious enemy among us: boosting MRSA vaccines. Nat. Med. 17, 168–169 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. & Zychlinsky, A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30, 459–489 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Barca, E., Carratala, J., Mykietiuk, A., Fernandez-Sevilla, A. & Gudiol, F. Predisposing factors and outcome of Staphylococcus aureus bacteremia in neutropenic patients with cancer. Eur. J. Clin. Microbiol. Infect. Dis. 20, 117–119 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lakshman, R. & Finn, A. Neutrophil disorders and their management. J. Clin. Pathol. 54, 7–19 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouma, G., Ancliff, P. J., Thrasher, A. J. & Burns, S. O. Recent advances in the understanding of genetic defects of neutrophil number and function. Br. J. Haematol. 151, 312–326 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, T. & Sullivan, K. E. Infections in patients with inherited defects in phagocytic function. Clin. Microbiol. Rev. 16, 597–621 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antibacterial Products in Clinical Development for Priority Pathogens (World Health Organization, 2021); https://www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/antibacterial-products-in-clinical-development-for-priority-pathogens

  • Liu, C.-I. et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319, 1391–1394 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, G. Y. et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202, 209–215 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shatalin, K., Shatalina, E., Mironov, A. & Nudler, E. H2S: a universal defense against antibiotics in bacteria. Science 334, 986–990 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shatalin, K. et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance. Science 372, 1169–1175 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, F. E., Borgogna, T. R., Patel, D. M., Sward, E. W. & Voyich, J. M. Epic immune battles of history: neutrophils vs. Staphylococcus aureus. Front. Cell. Infect. Microbiol. 7, 286 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Haas, C. J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rooijakkers, S. H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 6, 920–927 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simmen, H.-P. & Blaser, J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am. J. Surg. 166, 24–27 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartlett, J. G. & Finegold, S. M. Anaerobic infections of the lung and pleural space. Am. Rev. Respir. Dis. 110, 56–77 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • McGovern, N. N. et al. Hypoxia selectively inhibits respiratory burst activity and killing of Staphylococcus aureus in human neutrophils. J. Immunol. 186, 453–463 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, F. et al. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol. 12, 174–179 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krute, C. N., Ridder, M. J., Seawell, N. A. & Bose, J. L. Inactivation of the exogenous fatty acid utilization pathway leads to increased resistance to unsaturated fatty acids in Staphylococcus aureus. Microbiology 165, 197 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiwari, K. B., Gatto, C. & Wilkinson, B. J. Plasticity of coagulase-negative staphylococcal membrane fatty acid composition and implications for responses to antimicrobial agents. Antibiotics 9, 214 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beavers, W. N. et al. Arachidonic acid kills Staphylococcus aureus through a lipid peroxidation mechanism. mBio https://doi.org/10.1128/mbio.01333-19 (2019).

  • Reeder, B. J. & Wilson, M. T. Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease states. Curr. Med. Chem. 12, 2741–2751 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alayash, A. I. Oxygen therapeutics: can we tame haemoglobin? Nat. Rev. Drug Discov. 3, 152–159 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitvitsky, V. et al. Structural and mechanistic insights into hemoglobin-catalyzed hydrogen sulfide oxidation and the fate of polysulfide products. J. Biol. Chem. 292, 5584–5592 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitvitsky, V., Yadav, P. K., Kurthen, A. & Banerjee, R. Sulfide oxidation by a noncanonical pathway in red blood cells generates thiosulfate and polysulfides. J. Biol. Chem. 290, 8310–8320 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutaud, O. et al. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc. Natl Acad. Sci. USA 107, 2699–2704 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alayash, A. I. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? Nat. Biotechnol. 17, 545–549 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katikaneni, A. et al. Lipid peroxidation regulates long-range wound detection through 5-lipoxygenase in zebrafish. Nat. Cell Biol. 22, 1049–1055 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rummer, J. L., McKenzie, D. J., Innocenti, A., Supuran, C. T. & Brauner, C. J. Root effect hemoglobin may have evolved to enhance general tissue oxygen delivery. Science 340, 1327–1329 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hochmuth, R., Evans, C., Wiles, H. & McCown, J. Mechanical measurement of red cell membrane thickness. Science 220, 101–102 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, C. M. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, J. et al. Bioinspired nanoparticles with NIR‐controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv. Funct. Mater. 26, 7495–7506 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lin, A. et al. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano 13, 13965–13984 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berube, B. J. & Bubeck Wardenburg, J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins 5, 1140–1166 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clauditz, A., Resch, A., Wieland, K.-P., Peschel, A. & Götz, F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74, 4950–4953 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, M. et al. A TICT-based fluorescent probe for rapid and specific detection of hydrogen sulfide and its bio-imaging applications. Chem. Commun. 52, 6415–6418 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. Nat. Rev. Microbiol. 4, 556–562 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keren, I., Kaldalu, N., Spoering, A., Wang, Y. & Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conlon, B. P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365–370 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaible, B., Taylor, C. T. & Schaffer, K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob. Agents Chemother. 56, 2114–2118 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meredith, H. R., Srimani, J. K., Lee, A. J., Lopatkin, A. J. & You, L. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat. Chem. Biol. 11, 182–188 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Everse, J. & Hsia, N. The toxicities of native and modified hemoglobins. Free Radic. Biol. Med. 22, 1075–1099 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Payne, J. A. et al. Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nat. Commun. 12, 6157 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn, M. T., Ammons, M. C. B. & DeLeo, F. R. The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin. Sci. 111, 1–20 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Luo, B. et al. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution. Nat. Commun. 7, 12177 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, W., Thamphiwatana, S., Angsantikul, P. & Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6, 532–547 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azzopardi, E. A., Ferguson, E. L. & Thomas, D. W. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 68, 257–274 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, M. et al. A dual‐responsive antibiotic‐loaded nanoparticle specifically binds pathogens and overcomes antimicrobial‐resistant infections. Adv. Mater. 33, e2006772 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Thorn, C. R., Thomas, N., Boyd, B. J. & Prestidge, C. A. Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv. Transl. Res. 11, 1598–1624 (2021).

    CAS 

    Google Scholar
     

  • Lakshminarayanan, R., Ye, E., Young, D. J., Li, Z. & Loh, X. J. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthc. Mater. 7, 1701400 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fenaroli, F. et al. Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models. ACS Nano 12, 8646–8661 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Repenko, T. et al. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nat. Commun. 8, 470 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selsted, M. E. & Ouellette, A. J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551–557 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl Acad. Sci. USA 106, 6303–6308 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klebanoff, S. J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77, 598–625 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foster, T. J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 3, 948–958 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howden, B. P. et al. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 21, 380–395 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thammavongsa, V., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342, 863–866 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myles, I. A. et al. Signaling via the IL-20 receptor inhibits cutaneous production of IL-1β and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nat. Immunol. 14, 804–811 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmaler, M., Jann, N. J., Ferracin, F. & Landmann, R. T and B cells are not required for clearing Staphylococcus aureus in systemic infection despite a strong TLR2–MyD88-dependent T cell activation. J. Immunol. 186, 443–452 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, X., Zou, L. & Holmgren, A. Targeting bacterial antioxidant systems for antibiotics development. Curr. Med. Chem. 27, 1922–1939 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harbut, M. B. et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl Acad. Sci. USA 112, 4453–4458 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione. FASEB J. 27, 1394–1403 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luk, B. T. et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6, 2730–2737 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, W. et al. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 12, 5417–5426 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, G. S. Bailey & Scott’s Diagnostic Microbiology, 13th edn. Laboratory Medicine 44, e138–e139 (2013).

  • Peng, B. et al. Fluorescent probes based on nucleophilic substitution–cyclization for hydrogen sulfide detection and bioimaging. Chem.–A Eur. J. 20, 1010–1016 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lee, A. S. et al. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Prim. 4, 1–23 (2018).


    Google Scholar
     

  • Kim, W. et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature 556, 103–107 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merritt, J. H., Kadouri, D. E. & O’Toole, G. A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 22, 1B.1.1–1B.1.18 (2011).

    Article 

    Google Scholar
     

  • Lu, M. et al. Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Sci. Transl. Med. 13, eaba3571 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drummen, G. P., van Liebergen, L. C., den Kamp, J. A. O. & Post, J. A. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro) spectroscopic characterization and validation of methodology. Free Radic. Biol. Med. 33, 473–490 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monogue, M. L., Thabit, A. K., Hamada, Y. & Nicolau, D. P. Antibacterial efficacy of eravacycline in vivo against Gram-positive and Gram-negative organisms. Antimicrob. Agents Chemother. 60, 5001–5005 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison, E. M. et al. Genomic identification of cryptic susceptibility to penicillins and β-lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nat. Microbiol. 4, 1680–1691 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, A., Accorsi, A., Rhee, Y. & Girgenrath, M. Do’s and don’ts in the preparation of muscle cryosections for histological analysis. J. Vis. Exp. 15, e52793 (2015).


    Google Scholar
     

  • Ye, M. et al. pH‐responsive polymer–drug conjugate: an effective strategy to combat the antimicrobial resistance. Adv. Funct. Mater. 30, 2002655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat. Med. 17, 1310–1314 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, L. et al. Assessment of an anti-α-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob. Agents Chemother. 58, 1108–1117 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortin, L. I. et al. Rapid bactericidal activity of daptomycin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus peritonitis in mice as measured with bioluminescent bacteria. Antimicrob. Agents Chemother. 51, 1787–1794 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surewaard, B. G. et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J. Exp. Med. 213, 1141–1151 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wozniak, J. M. et al. Mortality risk profiling of Staphylococcus aureus bacteremia by multi-omic serum analysis reveals early predictive and pathogenic signatures. Cell 182, 1311–1327. e1314 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar