Nanotechnology

Nanozyme as a rising star for metabolic disease management | Journal of Nanobiotechnology


  • Zhang D, Kukkar D, Kaur H, Kim KH. Recent advances in the synthesis and applications of single-atom nanozymes in food safety monitoring. Adv Colloid Interface Sci. 2023;319: 102968.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang Q, Pang X, Luo Y, Huang K, He X, et al. Fe-N-C nanozyme mediated bioactive paper-3D printing integration technology enables portable detection of lactose in milk. Sens Actuators, B Chem. 2022;368: 132111.

    Article 
    CAS 

    Google Scholar
     

  • Navya PN, Mehla S, Begum A, Chaturvedi HK, Ojha R, Hartinger C, et al. Smart nanozymes for cancer therapy: the next frontier in oncology. Adv Healthc Mater. 2023;12: e2300768.

    Article 

    Google Scholar
     

  • Manea F, Houillon FB, Pasquato L, Scrimin P. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew Chem Int Ed. 2004;43:6165–9.

    Article 
    CAS 

    Google Scholar
     

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo W, Liu S, Zhao X, Wei F, Li Y, Sheng X, et al. ROS scavenging nanozyme modulates immunosuppression for sensitized cancer immunotherapy. Adv Healthc Mater. 2023;12: e2300191.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng F, Shi Y, Wu C, Liang J, Zhong Q, Briley K, et al. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel disease. J Nanobiotechnol. 2022;20:107.

    Article 
    CAS 

    Google Scholar
     

  • Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y, et al. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 2022;16:15959–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62:3–16.

    Article 
    PubMed 

    Google Scholar
     

  • Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16:377–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magliano DJ, Islam RM, Barr ELM, Gregg EW, Pavkov ME, Harding JL, et al. Trends in incidence of total or type 2 diabetes: systematic review. BMJ. 2019;366: l5003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valenzuela PL, Carrera-Bastos P, Castillo-García A, Lieberman DE, Santos-Lozano A, Lucia A. Obesity and the risk of cardiometabolic diseases. Nat Rev Cardiol. 2023;20:475–94.

    Article 
    PubMed 

    Google Scholar
     

  • Wu HZ, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020;126:1549–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 2016;148:183–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1066–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh R, Devi S, Gollen R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev. 2015;31:113–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  • Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157: 107843.

    Article 
    PubMed 

    Google Scholar
     

  • Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci. 2004;82:341–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perdomo CM, Cohen RV, Sumithran P, Clément K, Frühbeck G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet. 2023;401:1116–30.

    Article 
    PubMed 

    Google Scholar
     

  • Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376:641–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, et al. Mitochondria as an important target of metformin: the mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res. 2022;177: 106114.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: current perspectives on causes and risk. Metabolism. 2016;65:20–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCreight LJ, Stage TB, Connelly P, Lonergan M, Nielsen F, Prehn C, et al. Pharmacokinetics of metformin in patients with gastrointestinal intolerance. Diabetes Obes Metab. 2018;20:1593–601.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsou YH, Wang B, Ho W, Hu B, Tang P, Sweet S, et al. Nanotechnology-mediated drug delivery for the treatment of obesity and its related comorbidities. Adv Healthc Mater. 2019;8: e1801184.

    Article 
    PubMed 

    Google Scholar
     

  • Chen L, Xing S, Lei Y, Chen Q, Zou Z, Quan K, et al. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew Chem Int Ed Engl. 2021;60:23534–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liu W, Wang X, Liu Y, Wei H. Nanozyme-enabled treatment of cardio- and cerebrovascular diseases. Small. 2023;19: e2204809.

    Article 
    PubMed 

    Google Scholar
     

  • Wan Q, Huang B, Li T, Xiao Y, He Y, Du W, et al. Selective targeting of visceral adiposity by polycation nanomedicine. Nat Nanotechnol. 2022;17:1311–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo HH, Feng CL, Zhang WX, Luo ZG, Zhang HJ, Zhang TT, et al. Liver-target nanotechnology facilitates berberine to ameliorate cardio-metabolic diseases. Nat Commun. 2019;10:1981.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han YK, Jeong EJ, Seo Y, Lee IY, Choi S, Lee H, et al. Adipocytolytic polymer nanoparticles for localized fat reduction. ACS Nano. 2023;17:70–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta. 2015;1850:1607–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deprince A, Haas JT, Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol Metab. 2020;42: 101092.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Yang N, Zhang H. Metabolic dysregulation of lymphocytes in autoimmune diseases. Trends Endocrinol Metabolism. 2024. https://doi.org/10.1016/j.tem.2024.1001.1005.

    Article 

    Google Scholar
     

  • Otaki Y, Watanabe T, Kinoshita D, Yokoyama M, Takahashi T, Toshima T, et al. Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol. 2017;228:151–7.

    Article 
    PubMed 

    Google Scholar
     

  • Pinkosky SL, Groot PHE, Lalwani ND, Steinberg GR. Targeting ATP-citrate lyase in hyperlipidemia and metabolic disorders. Trends Mol Med. 2017;23:1047–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Jiang L, Wang J, Li S, Yu Y, You J, et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology. 2009;49:1166–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang WP, Yang X, Zhu LJ, Chu HS, Li XY, Xu WT. Nanozymes: activity origin, catalytic mechanism, and biological application. Coord Chem Rev. 2021;448: 214170.

    Article 
    CAS 

    Google Scholar
     

  • Chen Z, Yu Y, Gao Y, Zhu Z. Rational design strategies for nanozymes. ACS Nano. 2023;17:13062–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng F, Zhu P, Yang L, Xia L, Liu H. Nanozymes with atomically dispersed metal centers: structure–activity relationships and biomedical applications. Chem Eng J. 2023;452: 139411.

    Article 
    CAS 

    Google Scholar
     

  • Wu Y, Wu J, Jiao L, Xu W, Wang H, Wei X, et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal Chem. 2020; 92(4):3373-3379

  • Zhang J, Wu TS, Thang HV, Tseng KY, Hao X, Xu B, et al. Cluster nanozymes with optimized reactivity and utilization of active sites for effective peroxidase (and oxidase) mimicking. Small. 2022;18: e2104844.

    Article 
    PubMed 

    Google Scholar
     

  • Qu Y, Wang L, Li Z, Li P, Zhang Q, Lin Y, et al. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv Mater. 2019;31: e1904496.

    Article 
    PubMed 

    Google Scholar
     

  • Sha M, Xu W, Fang Q, Wu Y, Gu W, Zhu C, et al. Metal-organic-framework-involved nanobiocatalysis for biomedical applications. Chem Catalysis. 2022;2:2552–89.

    Article 
    CAS 

    Google Scholar
     

  • Yuan S, Peng J, Cai B, Huang Z, Garcia-Esparza AT, Sokaras D, et al. Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution. Nat Mater. 2022;21:673–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu W, Guo Y, Zhang J, Yue Y, Fan L, Li F, et al. a high catalytic activity nanozyme based on cobalt-doped carbon dots for biosensor and anticancer cell effect. ACS Appl Mater Interfaces. 2022;14:57206–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou C, Zhang L, Xu Z, Sun T, Gong M, Liu Y, et al. Self-propelled ultrasmall AuNPs-tannic acid hybrid nanozyme with ROS-scavenging and anti-inflammatory activity for drug-induced liver injury alleviation. Small. 2023;19: e2206408.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang DY, Tu T, Younis MR, Zhu KS, Liu H, Lei S, et al. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics. 2021;11:9904–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dashtestani F, Ghourchian H, Najafi A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. Mater Sci Eng C Mater Biol Appl. 2019;94:831–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, You M, Wang F, Wang Z, Gao X, Jing C, et al. Multifunctional graphdiyne-cerium oxide nanozymes facilitate microRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv Mater. 2021;33: e2100556.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu W, Mei J, Zhang X, Zhou J, Xu D, Su Z, et al. Photothermal nanozyme-based microneedle patch against refractory bacterial biofilm infection via iron-actuated Janus ion therapy. Adv Mater. 2022;34: e2207961.

    Article 
    PubMed 

    Google Scholar
     

  • Ali A, Ovais M, Zhou H, Rui Y, Chen C. Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials. 2021;275: 120951.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Li G, Wu D, Li X, Hu N, Chen J, et al. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron. 2019;137:178–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shang L, Yu Y, Jiang Y, Liu X, Sui N, Yang D, et al. Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano. 2023;17:15962–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop-Schnürch A. Thiolated nanoparticles for biomedical applications: mimicking the workhorses of our body. Adv Sci (Weinh). 2022;9: e2102451.

    Article 
    PubMed 

    Google Scholar
     

  • Albrecht-Schgoer K, Barthelmes J, Schgoer W, Theurl M, Nardin I, Lener D, et al. Nanoparticular delivery system for a secretoneurin derivative induces angiogenesis in a hind limb ischemia model. J Control Release. 2017;250:1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arriortua OK, Insausti M, Lezama L, Gil de Muro I, Garaio E, de la Fuente JM, et al. RGD-Functionalized Fe3O4 nanoparticles for magnetic hyperthermia. Colloids Surf B Biointerfaces. 2018;165:315–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neves AR, van der Putten L, Queiroz JF, Pinheiro M, Reis S. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J Biotechnol. 2021;331:108–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan L, Chen W, Zhu X, Huang L, Wang Z, Zhu G, et al. Folic acid conjugated self-assembled layered double hydroxide nanoparticles for high-efficacy-targeted drug delivery. Chem Commun (Camb). 2013;49:10938–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, Zhang J, Xu Y, Yi K, Li F, Zhou H, et al. Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater. 2023;28:112–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richter LR, Wan Q, Wen D, Zhang Y, Yu J, Kang JK, et al. Targeted delivery of notch inhibitor attenuates obesity-induced glucose intolerance and liver fibrosis. ACS Nano. 2020;14:6878–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Achadu OJ, Abe F, Hossain F, Nasrin F, Yamazaki M, Suzuki T, et al. Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus. Biosens Bioelectron. 2021;193: 113540.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang L, Guo H, Hou T, Zhang J, Li F. Metal-mediated Fe3O4@polydopamine-aptamer capture nanoprobe coupling multifunctional MXene@Au@Pt nanozyme for direct and portable photothermal analysis of circulating breast cancer cells. Biosens Bioelectron. 2023;234: 115346.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng Y, Liu P, Zhou W, Ding J, Liu J. Bioorthogonal DNA adsorption on polydopamine nanoparticles mediated by metal coordination for highly robust sensing in serum and living cells. ACS Nano. 2018;12:9070–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Wen CP, Liu YJ, Li AQ, Guo QY, Zhang X, et al. NIR responsive composite nanomaterials with in-situ deposition of cascaded nanozymes for multiple synergistic therapy of bacterial infection in diabetic mice. Chem Eng J. 2023;470:14.

    Article 

    Google Scholar
     

  • Yan J, Wang Y, Mu Z, Han X, Bi L, Wang X, et al. Gold nanobipyramid-mediated apoptotic camouflage of adipocytes for obesity immunotherapy. Adv Mater. 2023;35: e2207686.

    Article 
    PubMed 

    Google Scholar
     

  • Seijo B, Fattal E, Roblottreupel L, Couvreur P. Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug load. Int J Pharm. 1990;62:1–7.

    Article 
    CAS 

    Google Scholar
     

  • Bélteky P, Rónavári A, Zakupszky D, Boka E, Igaz N, Szerencsés B, et al. Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. Int J Nanomed. 2021;16:3021–40.

    Article 

    Google Scholar
     

  • Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 2021;13:10748–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu Y, Zhu J, Li Y, Shi H, Gong Y, Li R, et al. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. J Control Release. 2018;277:35–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi Z, Gao W, Xia X. Size effect in Pd-Ir core-shell nanoparticles as nanozymes. ChemBioChem. 2020;21:2440–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, et al. Nanozymes-recent development and biomedical applications. J Nanobiotechnol. 2022;20:92.

    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Zhang R, Yan X, Fan K. Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater Today. 2020;41:81–119.

    Article 
    CAS 

    Google Scholar
     

  • Fan H, Zheng J, Xie J, Liu J, Gao X, Yan X, et al. Surface ligand engineering ruthenium nanozyme superior to horseradish peroxidase for enhanced immunoassay. Adv Mater. 2023;36: e2300387.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao Y, Song S, Wang D, Liu H, Zhang J, Li Z, et al. Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat Commun. 2022;13:6758.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thalhauser S, Breunig M. Considerations for efficient surface functionalization of nanoparticles with a high molecular weight protein as targeting ligand. Eur J Pharm Sci. 2020;155: 105520.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh MJ, Yoon S, Babeer A, Liu Y, Ren Z, Xiang Z, et al. Nanozyme-based robotics approach for targeting fungal infection. Adv Mater. 2023;36: e2300320.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Zhou D, Luan X, Wang X, Zhu Z, Luo W, et al. Biodegradable hollow nanoscavengers restore liver functions to reverse insulin resistance in type 2 diabetes. ACS Nano. 2023;17:9313–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Shi X, Qu Y, Wang G. Functionalized ZnMnFe2O4-PEG-FA nanoenzymes integrating diagnosis and therapy for targeting hepatic carcinoma guided by multi-modality imaging. Nanoscale. 2023;15:11013–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • D’Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. J Control Release. 2015;203:126–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie H, Zheng P, Luo L-H, Cheng Y. Optimization of lipase-catalyzed synthesis of novel galactosyl ligands for selective targeting of liposomes to the asialoglycoprotein receptor. Biocatal Biotransform. 2015;33:130–9.

    CAS 

    Google Scholar
     

  • Fu X, Shi Y, Qi T, Qiu S, Huang Y, Zhao X, et al. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduct Target Ther. 2020;5:262.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, et al. Review on recent progress in magnetic nanoparticles: synthesis, characterization, and diverse applications. Front Chem. 2021;9: 629054.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou J, Xianyu Y. Tailoring the surface and composition of nanozymes for enhanced bacterial binding and antibacterial activity. Small. 2023;19: e2302640.

    Article 
    PubMed 

    Google Scholar
     

  • Won YW, Adhikary PP, Lim KS, Kim HJ, Kim JK, Kim YH. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat Mater. 2014;13:1157–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Simaeys D, De La Fuente A, Zilio S, Zoso A, Kuznetsova V, Alcazar O, et al. RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nat Commun. 2022;13:1815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, et al. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release. 2022;343:107–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gajula SNR, Nathani TN, Patil RM, Talari S, Sonti R. Aldehyde oxidase mediated drug metabolism: an underpredicted obstacle in drug discovery and development. Drug Metab Rev. 2022;54:427–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinke H, Asher G. Circadian clock control of liver metabolic functions. Gastroenterology. 2016;150:574–80.

    Article 
    PubMed 

    Google Scholar
     

  • Teng W, Zhao L, Yang S, Zhang C, Liu M, Luo J, et al. The hepatic-targeted, resveratrol loaded nanoparticles for relief of high fat diet-induced nonalcoholic fatty liver disease. J Control Release. 2019;307:139–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong Y, Yu X, Huang Y, Zhang Z, Mi L, Bao Z. Hepatic-targeted nano-enzyme with resveratrol loading for precise relief of nonalcoholic steatohepatitis. ChemMedChem. 2023;18: e202200468.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hossen MN, Kajimoto K, Akita H, Hyodo M, Ishitsuka T, Harashima H. Ligand-based targeted delivery of a peptide modified nanocarrier to endothelial cells in adipose tissue. J Control Release. 2010;147:261–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue Y, Xu X, Zhang XQ, Farokhzad OC, Langer R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci U S A. 2016;113:5552–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang M, Du D, Pu L, Song H, Deng M, Long Q, et al. SPION-decorated exosome delivered BAY55-9837 targeting the pancreas through magnetism to improve the blood GLC response. Small. 2019;15: e1903135.

    Article 
    PubMed 

    Google Scholar
     

  • Li S, Shang L, Xu B, Wang S, Gu K, Wu Q, et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew Chem Int Ed Engl. 2019;58:12624–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lankelma J, Nie Z, Carrilho E, Whitesides GM. Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine. Anal Chem. 2012;84:4147–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tierney S, Falch BM, Hjelme DR, Stokke BT. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo. Anal Chem. 2009;81:3630–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, et al. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem. 2016;88:5489–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Zhang X, Huang L, Zhang Z, Dong S. GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. Angew Chem Int Ed Engl. 2017;56:16082–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piao Y, Han DJ, Azad MR, Park M, Seo TS. Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens Bioelectron. 2015;65:220–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen QH, Lee DH, Nguyen PT, Le PG, Kim MI. Foldable paper microfluidic device based on single iron site-containing hydrogel nanozyme for efficient glucose biosensing. Chem Eng J. 2023. https://doi.org/10.1016/j.cej.2022.140541.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Y, Liu C, Yu Y, Yin M, Sun J, Huang J, et al. An organelle-specific nanozyme for diabetes care in genetically or diet-induced models. Adv Mater. 2020;32: e2003708.

    Article 
    PubMed 

    Google Scholar
     

  • Song G, Xu J, Zhong H, Zhang Q, Wang X, Lin Y, et al. Single-atom Ce-N4-C-(OH)2 nanozyme-catalyzed cascade reaction to alleviate hyperglycemia. Research (Wash D C). 2023;6:0095.

    CAS 
    PubMed 

    Google Scholar
     

  • Chang M, Hou Z, Wang M, Wen D, Li C, Liu Y, et al. Cu single atom nanozyme based high-efficiency mild photothermal therapy through cellular metabolic regulation. Angew Chem Int Ed Engl. 2022;61: e202209245.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Ma J, Tang K, Huang B. Beyond energy storage: roles of glycogen metabolism in health and disease. FEBS J. 2021;288:3772–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keinan O, Valentine JM, Xiao H, Mahata SK, Reilly SM, Abu-Odeh M, et al. Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature. 2021;599:296–301.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018;19:654–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park SE, Park CY, Sweeney G. Biomarkers of insulin sensitivity and insulin resistance: past, present and future. Crit Rev Clin Lab Sci. 2015;52:180–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25:1822–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parra-Robert M, Zeng M, Shu Y, Fernández-Varo G, Perramón M, Desai D, et al. Mesoporous silica coated CeO2 nanozymes with combined lipid-lowering and antioxidant activity induce long-term improvement of the metabolic profile in obese Zucker rats. Nanoscale. 2021;13:8452–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Zhao Y, Huang H, Zhang C, Liu H, Wang Z, et al. A nanozyme-immobilized hydrogel with endogenous ROS-scavenging and oxygen generation abilities for significantly promoting oxidative diabetic wound healing. Adv Healthc Mater. 2022;11: e2201524.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Z, Mei X, Hu K, Ma M, Zhang Y. Nanohybrid double network hydrogels based on a platinum nanozyme composite for antimicrobial and diabetic wound healing. ACS Appl Mater Interfaces. 2023;15:17612–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Yin Y, Zhang W, Li H, Wang T, Yin H, et al. Reactive oxygen species scavenging and inflammation mitigation enabled by biomimetic prussian blue analogues boycott atherosclerosis. J Nanobiotechnol. 2021;19:161.

    Article 
    CAS 

    Google Scholar
     

  • Ding J, Du Y, Hu X, Zhao M, Li Y, Li L, et al. Aptamer-modified atomically precise gold nanoclusters as targeted nanozymes to scavenge reactive oxygen species in white adipocytes. Nanotechnology. 2023;34: 365101.

    Article 

    Google Scholar
     

  • Wang S, Zhou Y, Liang X, Xu M, Li N, Zhao K. Platinum-cerium bimetallic nano-raspberry for atherosclerosis treatment via synergistic foam cell inhibition and P2Y12 targeted antiplatelet aggregation. Chem Eng J. 2022;430: 132859.

    Article 
    CAS 

    Google Scholar
     

  • Tu C, Lu H, Zhou T, Zhang W, Deng L, Cao W, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials. 2022;286: 121597.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Injectable hydrogel based on defect-rich multi-nanozymes for diabetic wound healing via an oxygen self-supplying cascade reaction. Small. 2022;18: e2200165.

    Article 
    PubMed 

    Google Scholar
     

  • Du X, Jia B, Wang W, Zhang C, Liu X, Qu Y, et al. pH-switchable nanozyme cascade catalysis: a strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. J Nanobiotechnol. 2022;20:12.

    Article 
    CAS 

    Google Scholar
     

  • Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126:1477–500.

    Article 
    PubMed 

    Google Scholar
     

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, et al. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. J Exp Med. 2021;218: e20201416.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang R, Xue B, Tao Y, Zhao H, Zhang Z, Wang X, et al. Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv Mater. 2022;34: e2205324.

    Article 
    PubMed 

    Google Scholar
     

  • Liu C, Fan W, Cheng W-X, Gu Y, Chen Y, Zhou W, et al. Red emissive carbon dot superoxide dismutase nanozyme for bioimaging and ameliorating acute lung injury. Adv Funct Mater. 2023;33:2213856.

    Article 
    CAS 

    Google Scholar
     

  • Gao W, He J, Chen L, Meng X, Ma Y, Cheng L, et al. Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat Commun. 2023;14:160.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, Ding J, Du Y, Li L, Li Y, Zhao M, et al. Aptamer-functionalized AuNCs nanogel for targeted delivery of docosahexaenoic acid to induce browning of white adipocytes. J Mater Chem B. 2023;11:4972–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • WHO. Diabetes. 2021. https://www.who.int/health-topics/diabetes#tab=tab_1.

  • Nassif M, Kosiborod M. Effect of glucose-lowering therapies on heart failure. Nat Rev Cardiol. 2018;15:282–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon HJ, Kim HS, Chung E, Lee DY. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics. 2022;12:6308–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tektonidou MG. Cardiovascular disease risk in antiphospholipid syndrome: thrombo-inflammation and atherothrombosis. J Autoimmun. 2022;128: 102813.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holl J, Kowalewski C, Zimek Z, Fiedor P, Kaminski A, Oldak T, et al. Chronic diabetic wounds and their treatment with skin substitutes. Cells. 2021;10:655.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol. 2016;74:607–25; quiz 625–606.

    Article 
    PubMed 

    Google Scholar
     

  • Meng F, Peng M, Chen Y, Cai X, Huang F, Yang L, et al. Defect-rich graphene stabilized atomically dispersed Cu3 clusters with enhanced oxidase-like activity for antibacterial applications. Appl Catal B. 2022;301: 120826.

    Article 
    CAS 

    Google Scholar
     

  • Yang J, Zeng W, Xu P, Fu X, Yu X, Chen L, et al. Glucose-responsive multifunctional metal-organic drug-loaded hydrogel for diabetic wound healing. Acta Biomater. 2022;140:206–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitabchi AE, Umpierrez GE, Murphy MB, Barrett EJ, Kreisberg RA, Malone JI, et al. Management of hyperglycemic crises in patients with diabetes. Diabetes Care. 2001;24:131–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Catrina SB, Zheng X. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers. Diabetes Metab Res Rev. 2016;32(Suppl 1):179–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials. 2020;249: 120020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan L, Bai X, Zhou Q, Chen C, Wang H, Liu T, et al. The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci. 2022;18:809–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan Y, Niu H, Liu Z, Dang Y, Shen J, Zayed M, et al. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci Adv. 2021;7:eabj0153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang J, Li X, Li H, Lv X, Xu Y, Hu Y, et al. Recent progress in nanozymes for the treatment of diabetic wounds. J Mater Chem B. 2023;11:6746–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang ZM, Wang Y, Feng ZX, Lin XY, Wang ZC, Zhong XC, et al. Targeting diverse wounds and scars: recent innovative bio-design of microneedle patch for comprehensive management. Small. 2023;12:e2306565.

  • Sun C, Zhou X, Liu C, Deng S, Song Y, Yang J, et al. An integrated therapeutic and preventive nanozyme-based microneedle for biofilm-infected diabetic wound healing. Adv Healthc Mater. 2023;12:e2301474.

  • Li W, Bei Y, Pan X, Zhu J, Zhang Z, Zhang T, et al. Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing. Biomater Res. 2023;27:49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Fu X, Yang J, Chen L, Leng F, Yang Z, et al. Glucose/ROS cascade-responsive ceria nanozymes for diabetic wound healing. Mater Today Bio. 2022;15: 100308.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obrosova IG, Chung SS, Kador PF. Diabetic cataracts: mechanisms and management. Diabetes Metab Res Rev. 2010;26:172–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Li L, Li S, Li S, Zhao M, Zhou Q, et al. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale. 2019;11:13126–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Gong X, Fang L, Fan Q, Cai L, Qiu X, et al. Potential of CeCl3@mSiO2 nanoparticles in alleviating diabetic cataract development and progression. Nanomedicine. 2017;13:1147–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Liu J. Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale. 2020;12:2914–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang L, Jiang Y, Liu F, Li S, Wu J, Zhao S, et al. Three-in-one covalent organic framework nanozyme: self-reporting, self-correcting and light-responsive for fluorescence sensing 3-nitrotyrosine. Biosens Bioelectron. 2023;237: 115542.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai W, Shu R, Yang F, Li B, Johnson HM, Yu S, et al. Engineered bio-heterojunction confers extra- and intracellular bacterial ferroptosis and hunger-triggered cell protection for diabetic wound repair. Adv Mater. 2023;36:e2305277.

  • Yang Z, Chen X. Semiconducting perylene diimide nanostructure: multifunctional phototheranostic nanoplatform. Acc Chem Res. 2019;52:1245–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao YF, An FF, Chen JX, Yu J, Tao WW, Yu Z, et al. The nanoassembly of an intrinsically cytotoxic near-infrared dye for multifunctionally synergistic theranostics. Small. 2019;15: e1903121.

    Article 
    PubMed 

    Google Scholar
     

  • Neri S, Garcia Martin S, Pezzato C, Prins LJ. Photoswitchable catalysis by a nanozyme mediated by a light-sensitive cofactor. J Am Chem Soc. 2017;139:1794–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shan J, Yang K, Xiu W, Qiu Q, Dai S, Yuwen L, et al. Cu2MoS4 nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria. Small. 2020;16: e2001099.

    Article 
    PubMed 

    Google Scholar
     

  • Li L, Yang J, Wei J, Jiang C, Liu Z, Yang B, et al. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. Light Sci Appl. 2022;11:286.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Wang Z, Zhao R, Zhou Y, Feng L, Gai S, et al. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano. 2022;16:3105–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao ZY, Gao WW, Shao NN, Zuo JM, Wang T, Xu MZ, et al. Iron phosphate nanozyme-hydrogel with multienzyme-like activity for efficient bacterial sterilization. ACS Appl Mater Interfaces. 2022;14:18170–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian Z, Li J, Zhang Z, Gao W, Zhou X, Qu Y. Highly sensitive and robust peroxidase-like activity of porous nanorods of ceria and their application for breast cancer detection. Biomaterials. 2015;59:116–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong C, Dai X, Wang X, Lu Q, Chen L, Song X, et al. A calcium fluoride nanozyme for ultrasound-amplified and Ca2+-overload-enhanced catalytic tumor nanotherapy. Adv Mater. 2022;34: e2205680.

    Article 
    PubMed 

    Google Scholar
     

  • Chang M, Wang Z, Dong C, Zhou R, Chen L, Huang H, et al. Ultrasound-amplified enzyodynamic tumor therapy by perovskite nanoenzyme-enabled cell pyroptosis and cascade catalysis. Adv Mater. 2023;35: e2208817.

    Article 
    PubMed 

    Google Scholar
     

  • Jana D, Wang D, Bindra AK, Guo Y, Liu J, Zhao Y. Ultrasmall alloy nanozyme for ultrasound- and near-infrared light-promoted tumor ablation. ACS Nano. 2021;15:7774–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lutz AM. Ultrasound and microbubble mediated therapeutic delivery: underlying mechanisms and future outlook. J Control Release. 2020;326:75–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang G, Zhou Y, Pan HB, Zhu C, Fu S, Wai CM, et al. Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium. Ultrason Sonochem. 2016;28:192–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa JM, Almeida Neto AF. Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: a review. Ultrason Sonochem. 2020;68: 105193.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun D, Pang X, Cheng Y, Ming J, Xiang S, Zhang C, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano. 2020;14:2063–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Liao J, Lin Y, Zhang J, Zheng C. Nanozyme’s catalytic activity at neutral pH: reaction substrates and application in sensing. Anal Bioanal Chem. 2023;415:3817–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asati A, Kaittanis C, Santra S, Perez JM. pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem. 2011;83:2547–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen PT, Lee J, Cho A, Kim MS, Choi D, Han JW, et al. Rational development of co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral pH for paper-based colorimetric detection of multiple biomarkers. Adv Funct Mater. 2022;32:2112428.

    Article 
    CAS 

    Google Scholar
     

  • Chen T, Zhao Q, Meng X, Li Y, Peng H, Whittaker AK, et al. Ultrasensitive magnetic tuning of optical properties of films of cholesteric cellulose nanocrystals. ACS Nano. 2020;14:9440–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majumder S, Dey S, Bagani K, Dey SK, Banerjee S, Kumar S. A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core-shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors. Dalton Trans. 2015;44:7190–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Chen X, Zhang Y, Wang Y, Cui M, Li G, et al. Magnetoresponsive nanozyme: magnetic stimulation on the nanozyme activity of iron oxide nanoparticles. Sci China Life Sci. 2022;65:184–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Zhao Y, Hou Y, Tang G, Zhang R, Yang Y, et al. A thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv Mater. 2023;36: e2210144.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng C, Qiao J, Zhang H, Zhao Z, Qi L. Temperature modulating the peroxidase-mimic activity of poly(N-isopropyl acrylamide) protected gold nanoparticles for colorimetric detection of glutathione. Spectrochim Acta A Mol Biomol Spectrosc. 2022;280: 121516.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji H, Zhang C, Xu F, Mao Q, Xia R, Chen M, et al. Inhaled pro-efferocytic nanozymes promote resolution of acute lung injury. Adv Sci (Weinh). 2022;9: e2201696.

    Article 
    PubMed 

    Google Scholar
     

  • Zeng M, Zhang X, Tang J, Liu X, Lin Y, Guo D, et al. Conservation of the enzyme-like activity and biocompatibility of CeO2 nanozymes in simulated body fluids. Nanoscale. 2023;15:14365–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma X, Hao J, Wu J, Li Y, Cai X, Zheng Y. Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration. Adv Mater. 2022;34: e2106723.

    Article 
    PubMed 

    Google Scholar
     

  • Sahu A, Jeon J, Lee MS, Yang HS, Tae G. Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing. Mater Sci Eng C Mater Biol Appl. 2021;119: 111596.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdelkhaliq A, van der Zande M, Punt A, Helsdingen R, Boeren S, Vervoort JJM, et al. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. J Nanobiotechnol. 2018;16:70.

    Article 

    Google Scholar
     

  • Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci. 2020;7: 587012.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei YJ, Li J, Hu ZE, Xing X, Zhou ZW, Yu Y, et al. A porphyrin-MOF-based integrated nanozyme system for catalytic cascades and light-enhanced synergistic amplification of cellular oxidative stress. J Mater Chem B. 2023;11:6581–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haney MJ, Suresh P, Zhao Y, Kanmogne GD, Kadiu I, Sokolsky-Papkov M, et al. Blood-borne macrophage-neural cell interactions hitchhike on endosome networks for cell-based nanozyme brain delivery. Nanomedicine (Lond). 2012;7:815–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-mediated endocytosis drives robust siRNA delivery of polymeric nanoparticles to macrophages. ACS Nano. 2021;15:8267–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis using nanoparticles. Mol Aspects Med. 2022;83: 100993.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci. 2020;284: 102261.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wani TU, Raza SN, Khan NA. Nanoparticle opsonization: forces involved and protection by long chain polymers. Polym Bull. 2020;77:3865–89.

    Article 
    CAS 

    Google Scholar
     

  • Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020;11:2337.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pustulka SM, Ling K, Pish SL, Champion JA. Protein nanoparticle charge and hydrophobicity govern protein corona and macrophage uptake. ACS Appl Mater Interfaces. 2020;12:48284–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu M, Xu J, Zheng J. Renal clearable luminescent gold nanoparticles: from the bench to the clinic. Angew Chem Int Ed Engl. 2019;58:4112–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008;3:703–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao L, Fan K, Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics. 2017;7:3207–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cypriyana PJJ, SS, Angalene JLA, Samrot AV, Kumar SS, Ponniah P, et al. Overview on toxicity of nanoparticles, it’s mechanism, models used in toxicity studies and disposal methods—a review. Biocatal Agric Biotechnol. 2021; 36:102117.

  • Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9:8655–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, et al. Nonspherical metal-based nanoarchitectures: synthesis and impact of size, shape, and composition on their biological activity. Small. 2021;17: e2007073.

    Article 
    PubMed 

    Google Scholar
     

  • Roshanzadeh A, Park S, Ganjbakhsh SE, Park J, Lee DH, Lee S, et al. Surface charge-dependent cytotoxicity of plastic nanoparticles in alveolar cells under cyclic stretches. Nano Lett. 2020;20:7168–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shahbazi MA, Hamidi M, Mäkilä EM, Zhang H, Almeida PV, Kaasalainen M, et al. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials. 2013;34:7776–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy DA, Cheng H, Yang T, Yan X, Adjei IM. Reversing hypoxia with PLGA-encapsulated manganese dioxide nanoparticles improves natural killer cell response to tumor spheroids. Mol Pharm. 2021;18:2935–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho LWC, Yung WY, Sy KHS, Li HY, Choi CKK, Leung KC, et al. Effect of alkylation on the cellular uptake of polyethylene glycol-coated gold nanoparticles. ACS Nano. 2017;11:6085–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braakhuis HM, Giannakou C, Peijnenburg WJ, Vermeulen J, van Loveren H, Park MV. Simple in vitro models can predict pulmonary toxicity of silver nanoparticles. Nanotoxicology. 2016;10:770–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Li S, Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol Mech Methods. 2021;31:1–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol. 2016;14:65.

    Article 

    Google Scholar
     

  • Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, et al. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front Bioeng Biotechnol. 2020;8:822.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang M, Zhu Y, Xin G, Wang Y, Li F, Li S, et al. Multi-enzyme mimetic iridium nanozymes-based thrombus microenvironment-modulated nanoplatform for enhanced thrombolytic therapy. Chem Eng J. 2023;470: 144156.

    Article 
    CAS 

    Google Scholar
     

  • Zhao X, Abulikemu A, Lv S, Qi Y, Duan J, Zhang J, et al. Oxidative stress- and mitochondrial dysfunction-mediated cytotoxicity by silica nanoparticle in lung epithelial cells from metabolomic perspective. Chemosphere. 2021;275: 129969.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chrishtop VV, Prilepskii AY, Nikonorova VG, Mironov VA. Nanosafety vs nanotoxicology: adequate animal models for testing in vivo toxicity of nanoparticles. Toxicology. 2021;462: 152952.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armstrong DG, Tan TW, Boulton AJM, Bus SA. Diabetic foot ulcers: a review. JAMA. 2023;330:62–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sehit E, Altintas Z. Significance of nanomaterials in electrochemical glucose sensors: an updated review (2016–2020). Biosens Bioelectron. 2020;159: 112165.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, et al. Neutrophil-like cell-membrane-coated nanozyme therapy for ischemic brain damage and long-term neurological functional recovery. ACS Nano. 2021;15:2263–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue B, Ge M, Fan K, Huang X, Yan X, Jiang W, et al. Mitochondria-targeted nanozymes eliminate oxidative damage in retinal neovascularization disease. J Control Release. 2022;350:271–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subin TS, Vijayan V, Kumar KJR. Updated regulatory considerations for nanomedicines. Pharm Nanotechnol. 2017;5:180–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Bleeker EAJ, Swart E, Braakhuis H, Fernández Cruz ML, Friedrichs S, Gosens I, et al. Towards harmonisation of testing of nanomaterials for EU regulatory requirements on chemical safety—a proposal for further actions. Regul Toxicol Pharmacol. 2023;139: 105360.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, et al. Multienzyme-like nanozymes: regulation, rational design, and application. Adv Mater. 2023;36: e2211210.

    Article 
    PubMed 

    Google Scholar