Nanotechnology

Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics | Journal of Nanobiotechnology


  • Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the physicochemical, electroactive, and biodelivery properties of metal nanoparticles on peripheral nerve regeneration. ACS Biomater Sci Eng. 2022;9:106–38.

    Article 
    PubMed 

    Google Scholar
     

  • Qian Y, Lin H, Yan Z, Shi J, Fan C. Functional nanomaterials in peripheral nerve regeneration: scaffold design, chemical principles and microenvironmental remodeling. Mater Today. 2021;51:165–87.

    Article 
    CAS 

    Google Scholar
     

  • Liu F, Xu J, Wu L, Zheng T, Han Q, Liang Y, Zhang L, Li G, Yang Y. The influence of the surface topographical cues of biomaterials on nerve cells in peripheral nerve regeneration: a review. Stem Cells Int. 2021. https://doi.org/10.1155/2021/8124444.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SM, Lee MS, Jeon J, Lee DH, Yang K, Cho SW, Han I, Yang HS. Biodegradable nerve guidance conduit with microporous and micropatterned poly (lactic-co-glycolic acid)-accelerated sciatic nerve regeneration. Macromol Biosci. 2018;18:1800290.

    Article 

    Google Scholar
     

  • Hu Y, Chen Z, Wang H, Guo J, Cai J, Chen X, Wei H, Qi J, Wang Q, Liu H, et al. Conductive nerve guidance conduits based on morpho butterfly wings for peripheral nerve repair. ACS Nano. 2022;16:1868–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng T, Wu L, Xu J, Sun S, Guan W, Han Q, Zhang L, Gu X, Yang Y, Li G. YR/DFO@DCNT functionalized anisotropic micro/nano composite topography scaffolds for accelerating long-distance peripheral nerve regeneration. Compos B Eng. 2022;246:110242.

    Article 
    CAS 

    Google Scholar
     

  • Huang L, Gao J, Wang H, Xia B, Yang Y, Xu F, Zheng X, Huang J, Luo Z. Fabrication of 3D scaffolds displaying biochemical gradients along longitudinally oriented microchannels for neural tissue engineering. ACS Appl Mater Interfaces. 2020;12:48380–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Z, Sun M, Li Y, Guo Z, Li H. Reduced graphene oxide-coated electrospun fibre: effect of orientation, coverage and electrical stimulation on Schwann cells behavior. J Mater Chem B. 2021;9:2656–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Gao H, Wang H, Cao X. Engineering topography: effects on nerve cell behaviors and applications in peripheral nerve repair. J Mater Chem B. 2021;9:6310–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rigby MJ, Gomez TM, Puglielli L. Glial cell-axonal growth cone interactions in neurodevelopment and regeneration. Front Neurosci. 2020;14:203.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozulin P, Richards LJ. Axonal guidance: making connections. In: Pfaff DW, Volkow ND, Rubenstein JL, editors. Neuroscience in the 21st century: from basic to clinical. New York: Springer; 2022. p. 383–406.

    Chapter 

    Google Scholar
     

  • Dravid A, O’Carroll SJ, Svirskis D. Neurotrophins and their role in axonal outgrowth following spinal cord injury. In: Rajendram R, Preedy VR, Martin CR, editors. Cellular, molecular, physiological, and behavioral aspects of spinal cord injury. Amsterdam: Elsevier; 2022. p. 215–27.

    Chapter 

    Google Scholar
     

  • SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol. 2021;22:529–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh B, Wu YW, Swaminathan V, Lam V, Ding J, George PM. Modulating the electrical and mechanical microenvironment to guide neuronal stem cell differentiation. Adv Sci. 2021;8:2002112.

    Article 
    CAS 

    Google Scholar
     

  • Chu X-L, Song X-Z, Li Q, Li Y-R, He F, Gu X-S, Ming D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res. 2022;17:2185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials. 2021;275:120982.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering tissues of the central nervous system: interfacing conductive biomaterials with neural stem/progenitor cells. Adv Healthcare Mater. 2022;11:2101577.

    Article 
    CAS 

    Google Scholar
     

  • Thrivikraman G, Boda SK, Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective. Biomaterials. 2018;150:60–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musselman ED, Cariello JE, Grill WM, Pelot NA. ASCENT (automated simulations to characterize electrical nerve thresholds): a pipeline for sample-specific computational modeling of electrical stimulation of peripheral nerves. PLoS Comput Biol. 2021;17:e1009285.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eftekhari BS, Eskandari M, Janmey PA, Samadikuchaksaraei A, Gholipourmalekabadi M. Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells. Adv Func Mater. 2020;30:1907792.

    Article 
    CAS 

    Google Scholar
     

  • Repić T, Madirazza K, Bektur E, Sapunar D. Characterization of dorsal root ganglion neurons cultured on silicon micro-pillar substrates. Sci Rep. 2016;6:39560.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivasan A, Tahilramani M, Bentley JT, Gore RK, Millard DC, Mukhatyar VJ, Joseph A, Haque AS, Stanley GB, English AW, Bellamkonda RV. Microchannel-based regenerative scaffold for chronic peripheral nerve interfacing in amputees. Biomaterials. 2015;41:151–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh SH, Kang JG, Kim TH, Namgung U, Song KS, Jeon BH, Lee JH. Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient. J Biomed Mater Res, Part A. 2018;106:52–64.

    Article 
    CAS 

    Google Scholar
     

  • Zou Y, Qin J, Huang Z, Yin G, Pu X, He D. Fabrication of aligned conducting PPy-PLLA fiber films and their electrically controlled guidance and orientation for neurites. ACS Appl Mater Interfaces. 2016;8:12576–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu K, Qian Y, Gong J, Zhu Z, Yin J, Ma L, Yu M, Wang H. Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering. Bio-Des Manuf. 2021;4:258–77.

    Article 
    CAS 

    Google Scholar
     

  • Antoniadis G. The peripheral nerve: neuroanatomical principles before and after injury. In: Haastert-Talini K, Assmus H, Antoniadis G, editors. Modern concepts of peripheral nerve repair. Cham: Springer; 2017. p. 1–10.


    Google Scholar
     

  • Reina MA, Boezaart AP, Tubbs RS, Zasimovich Y, Fernández-Domínguez M, Fernández P, Sala-Blanch X. Another (internal) epineurium: beyond the anatomical barriers of nerves. Clin Anat. 2020;33:199–206.

    Article 
    PubMed 

    Google Scholar
     

  • Pestronk A, Schmidt RE, Bucelli R, Sim J. Schwann cells and myelin in human peripheral nerve: major protein components vary with age, axon size and pathology. Neuropathol Appl Neurobiol. 2023;49:e12898.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol. 2021;81:464–89.

    Article 
    PubMed 

    Google Scholar
     

  • Papagiannis G, Triantafyllou A, Stasi S, Yiannopoulou KG, Papathanasiou G, Mitsiokapa E, Papadopoulos EC, Papagelopoulos PJ, Koulouvaris P. Biomechanical behavior and viscoelastic properties of peripheral nerves subjected to tensile stress: common injuries and current repair techniques. Crit Rev Phys Rehab Med. 2020. https://doi.org/10.1615/CritRevPhysRehabilMed.2020034798.

    Article 

    Google Scholar
     

  • Chooi WH, Chew SY. Modulation of cell-cell interactions for neural tissue engineering: potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials. 2019;197:327–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gärtner A, Fornasiero EF, Dotti CG. Cadherins as regulators of neuronal polarity. Cell Adh Migr. 2015;9:175–82.

    Article 
    PubMed 

    Google Scholar
     

  • Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res. 2020;388:111824.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sowparani S, Mahalakshmi P, Sweety JP, Francis AP, Dhanalekshmi U, Selvasudha N. Ubiquitous neural cell adhesion molecule (NCAM): potential mechanism and valorisation in cancer pathophysiology, drug targeting and molecular transductions. Mol Neurobiol. 2022;59:5902–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: an emerging modulator of nervous system injury and repair. Prog Neurobiol. 2019;180:101643.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han G-H, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res. 2019;14:1343.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu F, Xu J, Wu L, Zheng T, Han Q, Liang Y, Zhang L, Li G, Yang Y. The influence of the surface topographical cues of biomaterials on nerve cells in peripheral nerve regeneration: a review. Stem Cells Int. 2021;2021:1–13.


    Google Scholar
     

  • Romano NH, Madl CM, Heilshorn SC. Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth. Acta Biomater. 2015;11:48–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stukel JM, Willits RK. Mechanotransduction of neural cells through cell–substrate interactions. Tissue Eng Part B Rev. 2016;22:173–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldmann WH. Role of vinculin in cellular mechanotransduction. Cell Biol Int. 2016;40:241–56.

    Article 
    PubMed 

    Google Scholar
     

  • Wang H, Wang X, Qu J, Yue Q, Yn Hu, Zhang H. VEGF enhances the migration of MSCs in neural differentiation by regulating focal adhesion turnover. J Cell Physiol. 2015;230:2728–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y. Natural polymer-derived bioscaffolds for peripheral nerve regeneration. Adv Func Mater. 2022;32:2203829.

    Article 
    CAS 

    Google Scholar
     

  • Gregory H, Phillips JB. Materials for peripheral nerve repair constructs: natural proteins or synthetic polymers? Neurochem Int. 2021;143:104953.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riccio M, Marchesini A, Pugliese P, De Francesco F. Nerve repair and regeneration: biological tubulization limits and future perspectives. J Cell Physiol. 2019;234:3362–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinzel JC, Quyen Nguyen M, Kefalianakis L, Prahm C, Daigeler A, Hercher D, Kolbenschlag J. A systematic review and meta-analysis of studies comparing muscle-in-vein conduits with autologous nerve grafts for nerve reconstruction. Sci Rep. 2021;11:11691.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun P, Guan Y, Yang C, Hou H, Liu S, Yang B, Li X, Chen S, Wang L, Wang H. A bioresorbable and conductive scaffold integrating silicon membranes for peripheral nerve regeneration. Adv Healthcare Mater. 2023. https://doi.org/10.1002/adhm.202301859.

    Article 

    Google Scholar
     

  • Redondo-Gomez C, Leandro-Mora R, Blanch-Bermudez D, Espinoza-Araya C, Hidalgo-Barrantes D, Vega-Baudrit J. Recent advances in carbon nanotubes for nervous tissue regeneration. Adv Polym Technol. 2020;2020:1–16.

    Article 

    Google Scholar
     

  • Sharifi M, Kheradmandi R, Salehi M, Alizadeh M, ten Hagen TLM, Falahati M. Criteria, challenges, and opportunities for acellularized allogeneic/xenogeneic bone grafts in bone repairing. ACS Biomater Sci Eng. 2022;8:3199–219.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong H-J, Nam H, Jang J, Lee S-J. 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering. 2020;7:32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Askari M, Naniz MA, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci. 2021;9:535–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X. Implantable nerve guidance conduits: material combinations, multi-functional strategies and advanced engineering innovations. Bioactive Mater. 2022;11:57–76.

    Article 

    Google Scholar
     

  • Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration. Biotechnol J. 2018;13:1700635.

    Article 

    Google Scholar
     

  • Zhang J, Zhang X, Wang C, Li F, Qiao Z, Zeng L, Wang Z, Liu H, Ding J, Yang H. Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation. Adv Healthcare Mater. 2021;10:2000604.

    Article 
    CAS 

    Google Scholar
     

  • Du J, Liu J, Yao S, Mao H, Peng J, Sun X, Cao Z, Yang Y, Xiao B, Wang Y, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 2017;55:296–309.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh A, Asikainen S, Teotia AK, Shiekh PA, Huotilainen E, Qayoom I, Partanen J, Seppälä J, Kumar A. Biomimetic photocurable three-dimensional printed nerve guidance channels with aligned cryomatrix lumen for peripheral nerve regeneration. ACS Appl Mater Interfaces. 2018;10:43327–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng C, Yang Z, Chen S, Zhang F, Rao Z, Zhao C, Quan D, Bai Y, Shen J. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics. 2021;11:2917.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve guidance conduits with hierarchical anisotropic architecture for peripheral nerve regeneration. Adv Healthcare Mater. 2021;10:2100427.

    Article 
    CAS 

    Google Scholar
     

  • Kim JI, Hwang TI, Aguilar LE, Park CH, Kim CS. A controlled design of aligned and random nanofibers for 3D bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci Rep. 2016;6:23761.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Du Z, Zou J, Qiu S, Rao Z, Liu S, Sun X, Xu Y, Zhu Q, Liu X. Promoting neurite growth and schwann cell migration by the harnessing decellularized nerve matrix onto nanofibrous guidance. ACS Appl Mater Interfaces. 2019;11:17167–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quan Q, Meng H-Y, Chang B, Liu G-B, Cheng X-Q, Tang H, Wang Y, Peng J, Zhao Q, Lu S-B. Aligned fibers enhance nerve guide conduits when bridging peripheral nerve defects focused on early repair stage. Neural Regen Res. 2019;14:903.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu N, Wu H, Xue C, Gong Y, Wu J, Xiao Z, Yang Y, Ding F, Gu X. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials. 2013;34:100–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong X, Yang Y, Bao Z, Midgley AC, Li F, Dai S, Yang Z, Wang J, Liu L, Li W, et al. Micro-nanofiber composite biomimetic conduits promote long-gap peripheral nerve regeneration in canine models. Bioactive Mater. 2023;30:98–115.

    Article 
    CAS 

    Google Scholar
     

  • Wang L, Wu Y, Hu T, Ma PX, Guo B. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater. 2019;96:175–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Jørgensen ML, Wang Z, Amagat J, Wang Y, Li Q, Dong M, Chen M. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials. 2020;253:120108.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong X, Liu S, Yang Y, Gao S, Li W, Cao J, Wan Y, Huang Z, Fan G, Chen Q, et al. Aligned microfiber-induced macrophage polarization to guide schwann-cell-enabled peripheral nerve regeneration. Biomaterials. 2021;272:120767.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muangsanit P, Roberton V, Costa E, Phillips JB. Engineered aligned endothelial cell structures in tethered collagen hydrogels promote peripheral nerve regeneration. Acta Biomater. 2021;126:224–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan J, Zhang Y, Liu Y, Wang Y, Cao F, Yang Q, Tian F. Explanation of the cell orientation in a nanofiber membrane by the geometric potential theory. Results Phys. 2019;15:102537.

    Article 

    Google Scholar
     

  • Simitzi C, Ranella A, Stratakis E. Controlling the morphology and outgrowth of nerve and neuroglial cells: the effect of surface topography. Acta Biomater. 2017;51:21–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang K, Jung K, Ko E, Kim J, Park KI, Kim J, Cho S-W. Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells. ACS Appl Mater Interfaces. 2013;5:10529–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek J, Cho S-Y, Kang H, Ahn H, Jung W-B, Cho Y, Lee E, Cho S-W, Jung H-T, Im SG. Distinct mechanosensing of human neural stem cells on extremely limited anisotropic cellular contact. ACS Appl Mater Interfaces. 2018;10:33891–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai L, Zhang L, Dong J, Wang S. Photocured biodegradable polymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation. Langmuir. 2012;28:12557–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liguori GR, Zhou Q, Liguori TTA, Barros GG, Kühn PT, Moreira LFP, Van Rijn P, Harmsen MC. Directional topography influences adipose mesenchymal stromal cell plasticity: prospects for tissue engineering and fibrosis. Stem Cells Int. 2019. https://doi.org/10.1155/2019/5387850.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tonazzini I, Jacchetti E, Meucci S, Beltram F, Cecchini M. Schwann cell contact guidance versus boundary ­interaction in functional wound healing along nano and microstructured membranes. Adv Healthcare Mater. 2015;4:1849–60.

    Article 
    CAS 

    Google Scholar
     

  • Huang C, Ouyang Y, Niu H, He N, Ke Q, Jin X, Li D, Fang J, Liu W, Fan C, Lin T. Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl Mater Interfaces. 2015;7:7189–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polo Y, Luzuriaga J, Iturri J, Irastorza I, Toca-Herrera JL, Ibarretxe G, Unda F, Sarasua J-R, Pineda JR, Larrañaga A. Nanostructured scaffolds based on bioresorbable polymers and graphene oxide induce the aligned migration and accelerate the neuronal differentiation of neural stem cells. Nanomed: Nanotechnol, Biol Med. 2021;31:102314.

    Article 
    CAS 

    Google Scholar
     

  • Zhang D, Yao Y, Duan Y, Yu X, Shi H, Nakkala JR, Zuo X, Hong L, Mao Z, Gao C. Surface-anchored graphene oxide nanosheets on cell-scale micropatterned poly(d, l-lactide-co-caprolactone) conduits promote peripheral nerve regeneration. ACS Appl Mater Interfaces. 2020;12:7915–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Zheng T, Wu L, Han Q, Lei Y, Xue L, Zhang L, Gu X, Yang Y. Bionic microenvironment-inspired synergistic effect of anisotropic micro-nanocomposite topology and biology cues on peripheral nerve regeneration. Sci Adv. 2021;7:5812.

    Article 

    Google Scholar
     

  • Lu S, Chen W, Wang J, Guo Z, Xiao L, Wei L, Yu J, Yuan Y, Chen W, Bian M, et al. Polydopamine-decorated plcl conduit to induce synergetic effect of electrical stimulation and topological morphology for peripheral nerve regeneration. Small Methods. 2023;7:2200883.

    Article 
    CAS 

    Google Scholar
     

  • Zheng T, Wu L, Sun S, Xu J, Han Q, Liu Y, Wu R, Li G. Co-culture of Schwann cells and endothelial cells for synergistically regulating dorsal root ganglion behavior on chitosan-based anisotropic topology for peripheral nerve regeneration. Burns Trauma. 2022;10:030.

    Article 

    Google Scholar
     

  • Gu X, Chen X, Tang X, Zhou Z, Huang T, Yang Y, Ling J. Pure-silk fibroin hydrogel with stable aligned micropattern toward peripheral nerve regeneration. Nanotechnol Rev. 2021;10:10–9.

    Article 
    CAS 

    Google Scholar
     

  • Mobasseri A, Faroni A, Minogue BM, Downes S, Terenghi G, Reid AJ. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Eng Part A. 2015;21:1152–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scaccini L, Mezzena R, De Masi A, Gagliardi M, Gambarotta G, Cecchini M, Tonazzini I. Chitosan micro-grooved membranes with increased asymmetry for the improvement of the schwann cell response in nerve regeneration. Int J Mol Sci. 2021;22:7901.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Xu S, Wu S, Gao C. Micropatterned poly(d, l-lactide-co-caprolactone) films entrapped with gelatin for promoting the alignment and directional migration of Schwann cells. J Mater Chem B. 2018;6:1226–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang D, Wu S, Feng J, Duan Y, Xing D, Gao C. Micropatterned biodegradable polyesters clicked with CQAASIKVAV promote cell alignment, directional migration, and neurite outgrowth. Acta Biomater. 2018;74:143–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Xiong H, Zhu T, Liu Y, Pan H, Fan C, Zhao X, Lu WW. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair. ACS Nano. 2020;14:12579–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You R, Zhang Q, Li X, Yan S, Luo Z, Qu J, Li M. Multichannel bioactive silk nanofiber conduits direct and enhance axonal regeneration after spinal cord injury. ACS Biomater Sci Eng. 2020;6:4677–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang Z, Zhang Y, Wang Y, Wang S, Chang J, Liu W, Han B. Multichannel nerve conduit based on chitosan derivates for peripheral nerve regeneration and schwann cell survival. Carbohyd Polym. 2023;301:120327.

    Article 
    CAS 

    Google Scholar
     

  • Ye W, Li H, Yu K, Xie C, Wang P, Zheng Y, Zhang P, Xiu J, Yang Y, Zhang F, et al. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Mater Des. 2020;192:108757.

    Article 
    CAS 

    Google Scholar
     

  • Ankam S, Suryana M, Chan LY, Moe AAK, Teo BK, Law JB, Sheetz MP, Low HY, Yim EK. Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater. 2013;9:4535–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lunghi A, Mariano A, Bianchi M, Dinger NB, Murgia M, Rondanina E, Toma A, Greco P, Di Lauro M, Santoro F, et al. Flexible neural interfaces based on 3D PEDOT:PSS micropillar arrays. Adv Mater Interfaces. 2022;9:2200709.

    Article 
    CAS 

    Google Scholar
     

  • Vinzons LU, Lin S-P. Hierarchical micro-/nanotopographies patterned by tandem nanosphere lens lithography and uv–led photolithography for modulating pc12 neuronal differentiation. ACS Applied Nano Mater. 2022;5:6935–53.

    Article 
    CAS 

    Google Scholar
     

  • Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano. 2012;6:6222–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tse K-H, Sun M, Mantovani C, Terenghi G, Downes S, Kingham PJ. In vitro evaluation of polyester-based scaffolds seeded with adipose derived stem cells for peripheral nerve regeneration. J Biomed Mater Res, Part A. 2010;95A:701–8.

    Article 
    CAS 

    Google Scholar
     

  • Zhu M, Li W, Dong X, Yuan X, Midgley AC, Chang H, Wang Y, Wang H, Wang K, Ma PX. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat Commun. 2019;10:4620.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao Z, Lin T, Qiu S, Zhou J, Liu S, Chen S, Wang T, Liu X, Zhu Q, Bai Y, Quan D. Decellularized nerve matrix hydrogel scaffolds with longitudinally oriented and size-tunable microchannels for peripheral nerve regeneration. Mater Sci Eng, C. 2021;120:111791.

    Article 
    CAS 

    Google Scholar
     

  • Pawelec KM, Yoon C, Giger RJ, Sakamoto J. Engineering a platform for nerve regeneration with direct application to nerve repair technology. Biomaterials. 2019;216:119263.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park D, Kim D, Park SJ, Choi JH, Seo Y, Kim D-H, Lee S-H, Hyun JK, Yoo J, Jung Y. Micropattern-based nerve guidance conduit with hundreds of microchannels and stem cell recruitment for nerve regeneration. NPJ Regen Med. 2022;7:62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B. 2019;7:7090–109.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kundu A, Micholt L, Friedrich S, Rand DR, Bartic C, Braeken D, Levchenko A. Superimposed topographic and chemical cues synergistically guide neurite outgrowth. Lab Chip. 2013;13:3070–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Micholt L, Gärtner A, Prodanov D, Braeken D, Dotti CG, Bartic C. Substrate topography determines neuronal polarization and growth in vitro. PLoS ONE. 2013;8:e66170.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan S, Qi L, Li J, Pan D, Zhang Y, Li R, Zhang C, Wu D, Lau P, Hu Y. Guiding the patterned growth of neuronal axons and dendrites using anisotropic micropillar scaffolds. Adv Healthcare Mater. 2021;10:2100094.

    Article 
    CAS 

    Google Scholar
     

  • Vedaraman S, Perez-Tirado A, Haraszti T, Gerardo-Nava J, Nishiguchi A, De Laporte L. Anisometric microstructures to determine minimal critical physical cues required for neurite alignment. Adv Healthcare Mater. 2021;10:2100874.

    Article 
    CAS 

    Google Scholar
     

  • Baranes K, Chejanovsky N, Alon N, Sharoni A, Shefi O. Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnol Bioeng. 2012;109:1791–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milos F, Belu A, Mayer D, Maybeck V, Offenhäusser A. Polymer nanopillars induce increased paxillin adhesion assembly and promote axon growth in primary cortical neurons. Adv Biol. 2021;5:2000248.

    Article 
    CAS 

    Google Scholar
     

  • Milos F, Tullii G, Gobbo F, Lodola F, Galeotti F, Verpelli C, Mayer D, Maybeck V, Offenhäusser A, Antognazza MR. High aspect ratio and light-sensitive micropillars based on a semiconducting polymer optically regulate neuronal growth. ACS Appl Mater Interfaces. 2021;13:23438–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Wang W, Kratz K, Fang L, Li Z, Kurtz A, Ma N, Lendlein A. Controlling major cellular processes of human mesenchymal stem cells using microwell structures. Adv Healthcare Mater. 2014;3:1991–2003.

    Article 
    CAS 

    Google Scholar
     

  • Mobasseri S, Terenghi G, Downes S. Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair. J Mater Sci: Mater Med. 2013;24:1639–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang A, Huang Z, Yin G, Pu X. Fabrication of aligned, porous and conductive fibers and their effects on cell adhesion and guidance. Colloids Surf, B. 2015;134:469–74.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Wang Y, Chen Z, Xu D, Zhang D, Wang F, Zhao Y. Tailoring conductive inverse opal films with anisotropic elliptical porous patterns for nerve cell orientation. J Nanobiotechnol. 2022;20:1–11.


    Google Scholar
     

  • Piscioneri A, Morelli S, Ritacco T, Giocondo M, Peñaloza R, Drioli E, De Bartolo L. Topographical cues of PLGA membranes modulate the behavior of hMSCs, myoblasts and neuronal cells. Colloids Surf, B. 2023;222:113070.

    Article 
    CAS 

    Google Scholar
     

  • Kim JA, Lee N, Kim BH, Rhee WJ, Yoon S, Hyeon T, Park TH. Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials. 2011;32:2871–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo J, Kim J, Joo S, Choi JY, Kang K, Cho WK, Choi IS. Nanotopography-promoted formation of axon collateral branches of hippocampal neurons. Small. 2018;14:1801763.

    Article 

    Google Scholar
     

  • Cho Y, Choi Y, Seong H. Nanoscale surface coatings and topographies for neural interfaces. Acta Biomater. 2024;175:55–75.

    Article 
    PubMed 

    Google Scholar
     

  • Antman-Passig M, Shefi O. Remote magnetic orientation of 3d collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016;16:2567–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antman-Passig M, Giron J, Karni M, Motiei M, Schori H, Shefi O. Magnetic assembly of a multifunctional guidance conduit for peripheral nerve repair. Adv Func Mater. 2021;31:2010837.

    Article 
    CAS 

    Google Scholar
     

  • Xia L, Zhang C, Su K, Fan J, Niu Y, Yu Y, Chai R. Oriented growth of neural stem cell-derived neurons regulated by magnetic nanochains. Front Bioeng Biotechnol. 2022;10:895107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose JC, Cámara-Torres M, Rahimi K, Köhler J, Möller M, De Laporte L. Nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance. Nano Lett. 2017;17:3782–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omidinia-Anarkoli A, Boesveld S, Tuvshindorj U, Rose JC, Haraszti T, De Laporte L. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells. Small. 2017;13:1702207.

    Article 

    Google Scholar
     

  • Alsmadi NZ, Patil LS, Hor EM, Lofti P, Razal JM, Chuong C-J, Wallace GG, Romero-Ortega MI. Coiled polymeric growth factor gradients for multi-luminal neural chemotaxis. Brain Res. 2015;1619:72–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu RS, Chen PY, Fang JH, Chen YY, Chang CW, Lu YJ, Hu SH. Adaptable microporous hydrogels of propagating NGF-gradient by injectable building blocks for accelerated axonal outgrowth. Advanced Science. 2019;6:1900520.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu L, Jia S, Liu T, Yan L, Huang D, Wang Z, Chen S, Zhang Z, Zeng W, Zhang Y. Aligned PCL fiber conduits immobilized with nerve growth factor gradients enhance and direct sciatic nerve regeneration. Adv Func Mater. 2020;30:2002610.

    Article 
    CAS 

    Google Scholar
     

  • Zhang D, Li Z, Shi H, Yao Y, Du W, Lu P, Liang K, Hong L, Gao C. Micropatterns and peptide gradient on the inner surface of a guidance conduit synergistically promotes nerve regeneration in vivo. Bioactive Mater. 2022;9:134–46.

    Article 
    CAS 

    Google Scholar
     

  • Bertucci C, Koppes R, Dumont C, Koppes A. Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res Bull. 2019;152:265–84.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu R, Sun Z, Li C, Ramakrishna S, Chiu K, He L. Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol. 2019;319:112963.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Z, Cai M, Zhang X, Yu X, Wang S, Wan X, Wang ZL, Li L. Cell-traction-triggered on-demand electrical stimulation for neuron-like differentiation. Adv Mater. 2021;33:2106317.

    Article 
    CAS 

    Google Scholar
     

  • Jiang F, Shan Y, Tian J, Xu L, Li C, Yu F, Cui X, Wang C, Li Z, Ren K. Poly(l-Lactic Acid) nanofiber-based multilayer film for the electrical stimulation of nerve cells. Adv Mater Interfaces. 2023;10:2202474.

    Article 
    CAS 

    Google Scholar