Nanotechnology

Swim bladder-derived biomaterials: structures, compositions, properties, modifications, and biomedical applications | Journal of Nanobiotechnology


  • Lei Y, Lan X, He Z, Yin A, Jin W, Hu Q, Wang Y. Multifarious anti-biofouling bioprosthetic heart valve materials with the formation of interpenetrating polymer network structures. Mater Des. 2021;206: 109803.

    Article 
    CAS 

    Google Scholar
     

  • Chen F-M, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Revell CM, Athanasiou KA. Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Eng Part B Rev. 2008;15:1–15.

    Article 
    PubMed Central 

    Google Scholar
     

  • Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng. 2014;42:1517–27.

    Article 
    PubMed 

    Google Scholar
     

  • Xu H, Wan H, Zuo W, Sun W, Owens RT, Harper JR, Ayares DL, McQuillan DJ. A porcine-derived acellular dermal scaffold that supports soft tissue regeneration: removal of terminal galactose-α-(1,3)-galactose and retention of matrix structure. Tissue Eng Part A. 2009;15:1807–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Revell CM, Athanasiou KA. Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Eng Part B Rev. 2009;15:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gross RE, Hurwitt ES, Bill AH, Peirce EC. Preliminary observations on the use of human arterial grafts in the treatment of certain cardiovascular defects. N Engl J Med. 1948;239:578–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Moine A, Goldman M, Abramowicz D: Multiple pathways to allograft rejection. Transplantation 2002, 73.

  • Mason DW, Morris PJ. Effector mechanisms in allograft rejection. Annu Rev Immunol. 1986;4:119–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallentine ML, Cespedes RD. Review of cadaveric allografts in urology. Urology. 2002;59:318–24.

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura N, Kimura T, Kishida A. Overview of the development, applications, and future perspectives of decellularized tissues and organs. ACS Biomater Sci Eng. 2017;3:1236–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Li B, Jing H, Wu Y, Kong D, Leng X, Wang Z. Swim bladder as a novel biomaterial for cardiovascular materials with anti-calcification properties. Adv Healthcare Mater. 2020;9:1901154.

    Article 
    CAS 

    Google Scholar
     

  • Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: a comprehensive review. Int J Biol Macromol. 2023;246:125672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiles MC, Badylak SF, Lantz GC, Kokini K, Geddes LA, Morff RJ. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J Biomed Mater Res. 1995;29:883–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chouhan D, Kaushik S, Arora D. Trends in bio-derived biomaterials in tissue engineering. In: Bhaskar B, Sreenivasa Rao P, Kasoju N, Nagarjuna V, Baadhe RR, editors. Biomaterials in tissue engineering and regenerative medicine: from basic concepts to state of the art approaches. Singapore: Springer Singapore; 2021. p. 163–213.

    Chapter 

    Google Scholar
     

  • Hoornaert A, Layrolle P: Chapter 8—bone regenerative issues related to bone grafting biomaterials. In: Alghamdi H, Jansen J eds., Dental Implants and Bone Grafts. Woodhead Publishing; 2020: 207–215

  • Wu W, Li B, Liu Y, Wang X, Tang L. Effect of multilaminate small intestinal submucosa as a barrier membrane on bone formation in a rabbit mandible defect model. Biomed Res Int. 2018;2018:3270293.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B. 2019;7:5038–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Li K, Xu J, Liu M, Li P, Li X, Fan Y. A biomimetic hierarchical small intestinal submucosa–chitosan sponge/chitosan hydrogel scaffold with a micro/nano structure for dural repair. J Mater Chem B. 2021;9:7821–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lehmann S, Jawad K, Dieterlen MT, Hoyer A, Garbade J, Davierwala P, Borger MA. Durability and clinical experience using a bovine pericardial prosthetic aortic valve. J Thorac Cardiovasc Surg. 2021;161:1742–9.

    Article 
    PubMed 

    Google Scholar
     

  • Onions D, Cooper DKC, Alexander TJL, Brown C, Claassen E, Foweraker JE, Harris DL, Mahy BWJ, Minor PD, Osterhaus ADME, et al. An approach to the control of disease transmission in pig-to-human xenotransplantation. Xenotransplantation. 2000;7:143–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boneva Roumiana S, Folks Thomas M, Chapman Louisa E. Infectious disease issues in xenotransplantation. Clin Microbiol Rev. 2001;14:1–14.

    Article 
    PubMed Central 

    Google Scholar
     

  • Gaurav Kumar P, Nidheesh T, Govindaraju K, Suresh PV. Agriculture: enzymatic extraction and characterisation of a thermostable collagen from swim bladder of rohu (Labeo rohita). J Sci Food. 2017;97:1451–8.

    Article 
    CAS 

    Google Scholar
     

  • Pal GK, Suresh PV. Physico-chemical characteristics and fibril-forming capacity of carp swim bladder collagens and exploration of their potential bioactive peptides by in silico approaches. Int J Biol Macromol. 2017;101:304–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan L, Tao YB, Li P. Extraction hydrolysates from Larimichthys polyactis swim bladder using enzymatic hydrolysis. J Renew Mater. 2021;9:1099–109.

    Article 

    Google Scholar
     

  • Howaili F, Mashreghi M, Shahri NM, Kompany A, Jalal R. Development and evaluation of a novel beneficent antimicrobial bioscaffold based on animal waste-fish swim bladder (FSB) doped with silver nanoparticles. Environ Res. 2020;188:109823.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lutfee T, Alwan NF, Alsaffar MA, Ghany M, Mageed AK, AbdulRazak AA. An overview of the prospects of extracting collagens from waste sources and its applications. Chem Pap. 2021;75:6025–33.

    Article 
    CAS 

    Google Scholar
     

  • Mredha MTI, Kitamura N, Nonoyama T, Wada S, Goto K, Zhang X, Nakajima T, Kurokawa T, Takagi Y, Yasuda K, Gong JP. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone. Biomaterials. 2017;132:85–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez S, Vargas A, Salguero A. Use of bagre collagen in the production of seafood sausage. Rev Cientifica Facult Ciencias Vet. 2019;29:87–91.


    Google Scholar
     

  • Liu D, Liang L, Regenstein JM, Zhou P. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chem. 2012;133:1441–8.

    Article 
    CAS 

    Google Scholar
     

  • Zarubin NY, Kharenko EN, Bredikhina OV, Arkhipov LO, Zolotarev KV, Mikhailov AN, Nakhod VI, Mikhailova MV: Application of the gadidae fish processing waste for food grade gelatin production. Marine Drugs 2021, 19.

  • Kaewdang O, Benjakul S, Prodpran T, Kaewmanee T, Kishimura H. Characteristics of gelatin extracted from the swim bladder of yellowfin Tuna (Thunnus albacores) as affected by alkaline pretreatments. J Aquat Food Prod Technol. 2016;25:1190–201.

    Article 
    CAS 

    Google Scholar
     

  • Kaewdang O, Benjakul S, Prodpran T, Kaewmanee T, Kishimura H. Characteristics of gelatin from swim bladder of Yellowfin Tuna (Thunnus albacores) as influenced by extracting temperatures. Ital J Food Sci. 2015;27:366–74.

    CAS 

    Google Scholar
     

  • Usman M, Sahar A, Inam-Ur-Raheem M, Rahman UU, Sameen A, Aadil RM. Gelatin extraction from fish waste and potential applications in food sector. Int J Food Sci Technol. 2022;57:154–63.

    Article 
    CAS 

    Google Scholar
     

  • Xiao LL, Sun Y, Wang ZL, Wang F, Sun J, Zhang HJ, Liu K. A new type of biological glue derived from fish swim bladder: outstanding adhesion and surgical applications. Adv Mater Technol. 2021. https://doi.org/10.1002/admt.202100303.

    Article 

    Google Scholar
     

  • Pan L, Li P, Tao YB, Guo HR. Antimicrobial agent effectiveness in fish glue prepared by heat treatment and enzymatic hydrolysis of swim bladders. BioResources. 2018;13:3275–83.

    Article 
    CAS 

    Google Scholar
     

  • Igielska-Kalwat J, Kilian-Pieta E, Poloczanska-Godek S: The use of natural collagen obtained from fish waste in hair styling and care. Polymers 2022, 14.

  • Meng DW, Li W, Ura K, Takagi Y. Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen. Int J Biol Macromol. 2020;148:182–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maitra A, Karan SK, Paria S, Das AK, Bera R, Halder L, Si SK, Bera A, Khatua BB. Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy. 2017;40:633–45.

    Article 
    CAS 

    Google Scholar
     

  • Ghosh SK, Mandal D. Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder. Nano Energy. 2016;28:356–65.

    Article 
    CAS 

    Google Scholar
     

  • Ma JM, Zhu JQ, Ma P, Jie Y, Wang ZL, Cao X. Fish bladder film-based triboelectric nanogenerator for noncontact position monitoring. ACS Energy Lett. 2020;5:3005–11.

    Article 
    CAS 

    Google Scholar
     

  • Song MM, Cheng MJ, Xiao M, Zhang LN, Ju GN, Shi F: Biomimicking of a swim bladder and its application as a mini-generator. Adv Mater 2017, 29.

  • Li P, Pan L, Liu DX, Tao YB, Shi SQ. A bio-hygromorph fabricated with fish swim bladder hydrogel and wood flour-filled polylactic acid scaffold by 3D printing. Materials. 2019;12:2896.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia W, Cui M, et al. A biosensor based on swim-bladder membrane as substrate for determination of glucose. Chin J Anal Chem. 2011;39:1423–6.

    Article 
    CAS 

    Google Scholar
     

  • Jalali S, Fereidoni M, Shahri NM, Lari R. Effect of swim bladder matrix treated with hyaluronic acid on wound healing: an animal model evaluation. J Wound Care. 2019;28:206–13.

    Article 
    PubMed 

    Google Scholar
     

  • Li Q, Zhang F, Wang H, Pan T. Preparation and characterization of a novel acellular swim bladder as dura mater substitute. Neurol Res. 2019;41:242–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan X, Zhao Q, Zhang J, Lei Y, Wang Y. A combination of hydrogen bonding and chemical covalent crosslinking to fabricate a novel swim-bladder-derived dry heart valve material yields advantageous mechanical and biological properties. Biomed Mater. 2020;16: 015014.

    Article 

    Google Scholar
     

  • Dussoyer M, Michopoulou A, Rousselle P: Decellularized scaffolds for skin repair and regeneration. Appl Sci 2020, 10.

  • Sundar G, Joseph J, Prabhakumari C, John A, Abraham A. Natural collagen bioscaffolds for skin tissue engineering strategies in burns: a critical review. Int J Polym Mater Polym Biomater. 2021;70:593–604.

    Article 
    CAS 

    Google Scholar
     

  • Kumar MS, Singh VK, Mishra AK, Kushwaha B, Kumar R, Lal KK. Fish cell line: depositories, web resources and future applications. Cytotechnology. 2023. https://doi.org/10.1007/s10616-10023-00601-10612.

    Article 
    PubMed 

    Google Scholar
     

  • Barzkar N, Sukhikh S, Babich O, Venmathi Maran BA, Tamadoni Jahromi S. Marine collagen: purification, properties and application. Front Mar Sci. 2023;10:1245077.

    Article 

    Google Scholar
     

  • Finney JL, Robertson GN, McGee CAS, Smith FM, Croll RP. Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio). J Compar Neurol. 2006;495:587–606.

    Article 
    CAS 

    Google Scholar
     

  • Fänge R, Mattisson A: The gas secretory structures and the smooth muscles of the swimbladder of cyprinids. Bertil Hanstr6m Zoological papers in honour of his sixty-fifth birthday Zool Inst, Lurid 1956.

  • Evans HM, Keith A. A contribution to the anatomy and physiology of the air-bladder and Weberian ossicles in Cyprinidæ. Proc R Soc London Ser B,. 1925;97:545–76.

    Article 

    Google Scholar
     

  • Denton E. The buoyancy of marine animals. Sci Am. 1960;203:118–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelster B: Swimbladder function and buoyancy control in fishes. 2017. https://doi.org/10.1016/B978-0-12-809633-8.03063-6

  • Morris SM, Albright JT. The ultrastructure of the swimbladder of the toadfish, Opsanus tau L. Cell Tissue Res. 1975;164:85–104.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris SM, Albright JT. Ultrastructure of the swim bladder of the goldfish, Carassius auratus. Cell Tissue Res. 1979;198:105–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang H, Kong Y, Song L, Liu J, Wang Z. A thermostable type i collagen from swim bladder of silver carp (Hypophthalmichthys molitrix). Mar Drugs. 2023;21:280.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Adachi S, Ura K, Takagi Y. Properties of collagen extracted from Amur sturgeon Acipenser schrenckii and assessment of collagen fibrils in vitro. Int J Biol Macromol. 2019;137:809–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao M, Bruce AEE, Bhanji T, Davis EC, Keeley FW. Differential expression of two tropoelastin genes in zebrafish. Matrix Biol. 2007;26:115–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandes RMT, Couto Neto RG, Paschoal CWA, Rohling JH, Bezerra CWB. Collagen films from swim bladders: preparation method and properties. Colloids Surf B. 2008;62:17–21.

    Article 
    CAS 

    Google Scholar
     

  • Liu X, Zheng C, Luo X, Wang X, Jiang H. Recent advances of collagen-based biomaterials: multi-hierarchical structure, modification and biomedical applications. Mater Sci Eng C. 2019;99:1509–22.

    Article 
    CAS 

    Google Scholar
     

  • Sinthusamran S, Benjakul S, Kishimura H. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer). Food Chem. 2013;138:2435–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan R, Zhang J, Du X, Yao X, Konno K. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem. 2009;112:702–6.

    Article 
    CAS 

    Google Scholar
     

  • Liu D, Zhang X, Li T, Yang H, Zhang H, Regenstein JM, Zhou P. Extraction and characterization of acid- and pepsin-soluble collagens from the scales, skins and swim-bladders of grass carp (Ctenopharyngodon idella). Food Biosci. 2015;9:68–74.

    Article 

    Google Scholar
     

  • Pal GK, Suresh P. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innov Food Sci Emerg Technol. 2016;37:201–15.

    Article 
    CAS 

    Google Scholar
     

  • Sripriya R, Kumar R. A novel enzymatic method for preparation and characterization of collagen film from swim bladder of Fish Rohu (Labeo rohita). Food Nutr Sci. 2015;06:11.


    Google Scholar
     

  • Benjakul S, Thiansilakul Y, Visessanguan W, Roytrakul S, Kishimura H, Prodpran T, Meesane J. Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). J Sci Food Agric. 2010;90:132–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nalinanon S, Benjakul S, Visessanguan W, Kishimura H. Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chem. 2007;104:593–601.

    Article 
    CAS 

    Google Scholar
     

  • Li N, Lv S, Ma Y, Liu N, Wang S, Zhou D. In vitro antioxidant and anti-aging properties of swim bladder peptides from Atlantic cod (Gadus morhua). Int J Food Prop. 2020;23:1416–29.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y-Q, Zeng L, Yang Z-S, Huang F-F, Ding G-F, Wang B. Anti-fatigue effect by peptide fraction from protein hydrolysate of croceine croaker (Pseudosciaena crocea) swim bladder through inhibiting the oxidative reactions including DNA damage. Mar Drugs. 2016;14:221.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrin S, Rich CB, Morris SM, Stone PJ, Foster JA. The Zebrafish swimbladder: a simple model for lung elastin injury and repair. Connect Tissue Res. 1999;40:105–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang X, Zhao X, Luo H, Zhu K: Therapeutic effect of polysaccharide of large yellow croaker swim bladder on lupus nephritis of mice. Nutrients 2014, 6.

  • Chen S, Zhu K, Wang R, Zhao X. Preventive effect of polysaccharides from the large yellow croaker swim bladder on HCl/ethanol induced gastric injury in mice. Exp Ther Med. 2014;8:316–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li G-J, Sun P, Wang R, Zhou Y-L, Qian Y, Zhao X. Preventive effect of polysaccharide of Larimichthys crocea swim bladder on reserpine induced gastric ulcer in ICR mice. Korean J Physiol Pharmacol. 2014;18:183.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Y, Wang P, Zhang F, Yu Y, Zhang X, Lin L, Linhardt RJ. Glycosaminoglycans from fish swim bladder: isolation, structural characterization and bioactive potential. Glycoconjugate J. 2018;35:87–94.

    Article 
    CAS 

    Google Scholar
     

  • Zou XH, Foong WC, Cao T, Bay BH, Ouyang HW, Yip GW. Chondroitin Sulfate in Palatal Wound Healing. J Dent Res. 2004;83:880–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Im AR, Kim JY, Kim H-S, Cho S, Park Y, Kim YS. Wound healing and antibacterial activities of chondroitin sulfate and acharan sulfate-reduced silver nanoparticles. Nanotechnology. 2013;24: 395102.

    Article 
    PubMed 

    Google Scholar
     

  • Yamada S, Sugahara K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr Drug Discov Technol. 2008;5:289–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renuka V, Zynudheen AA, Panda SK, Ravishankar CNR. Nutritional evaluation of processing discards from tiger tooth croaker, Otolithes ruber. Food Sci Biotechnol. 2016;25:1251–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernard M, Jubeli E, Pungente MD, Yagoubi N. Biocompatibility of polymer-based biomaterials and medical devices—regulations, in vitro screening and risk-management. Biomater Sci. 2018;6:2025–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M: Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol 2018, 6.

  • Li N, Li X, Ma Y, Qiao F, Bai Y, Liu X, Xu Z. Swim bladder as an alternative biomaterial for bioprosthetic valves. Biomater Sci. 2021;9:8356–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin F, Rong H, Lin J, Yuan Y, Yu J, Yu C, You C, Wang S, Sun Z, Wen X. Enhancement of collagen deposition in swim bladder of Chu’s croaker (Nibea coibor) by proline: View from in-vitro and in-vivo study. Aquaculture. 2020;523: 735175.

    Article 
    CAS 

    Google Scholar
     

  • Gengshen Z, Qingjun Z, Guozhu S. Experimental duraplasty with carp swim-bladder in rabbits. J Hebei Med Univ. 2000;21:337–40.


    Google Scholar
     

  • Jiang A, Zu P, Shi W, Tan C, Li X, Lu J, Lin L. Analysis and evaluation of the nutritional components in swim bladder of silver carp. J Food Saf Qual. 2019;10:2219–24.


    Google Scholar
     

  • Fine ML, King TL, Ali H, Sidker N, Cameron TM. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau. Proc R Soc B Biol Sci. 2016;283:20161094.

    Article 

    Google Scholar
     

  • Duan Z, Wang J, Yin A, Shang J: Analysis and evaluation of several swim-bladders nutrition components. Food Res Dev 2007:62–65.

  • Zhang Y, Zhang J, Liu Z, Zhao S, Yan S: Comparison of Biomechanical Properties Between Aorta and Pulmonary Arteries. Beijing Biomed Eng 2011, 30:159–161+204.

  • Luo Y, Huang S, Ma L. A novel detergent-based decellularization combined with carbodiimide crosslinking for improving anti-calcification of bioprosthetic heart valve. Biomed Mater. 2021;16: 045022.

    Article 
    CAS 

    Google Scholar
     

  • Elkins RC, Dawson PE, Goldstein S, Walsh SP, Black KS. Decellularized human valve allografts. Ann Thorac Surg. 2001;71:S428–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Human P, Ofoegbu C, Ilsley H, Bezuidenhout D, de Villiers J, Williams DF, Zilla P. Decellularization and engineered crosslinking: a promising dual approach towards bioprosthetic heart valve longevity. Eur J Cardiothorac Surg. 2020;58:1192–200.

    Article 
    PubMed 

    Google Scholar
     

  • Ramm R, Goecke T, Theodoridis K, Hoeffler K, Sarikouch S, Findeisen K, Ciubotaru A, Cebotari S, Tudorache I, Haverich A, Hilfiker A. Decellularization combined with enzymatic removal of N-linked glycans and residual DNA reduces inflammatory response and improves performance of porcine xenogeneic pulmonary heart valves in an ovine in vivo model. Xenotransplantation. 2020;27: e12571.

    Article 
    PubMed 

    Google Scholar
     

  • Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater. 2014;10:1806–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong ML, Wong JL, Athanasiou KA, Griffiths LG. Stepwise solubilization-based antigen removal for xenogeneic scaffold generation in tissue engineering. Acta Biomater. 2013;9:6492–501.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sawada K, Terada D, Yamaoka T, Kitamura S, Fujisato T. Cell removal with supercritical carbon dioxide for acellular artificial tissue. J Chem Technol Biotechnol. 2008;83:943–9.

    Article 
    CAS 

    Google Scholar
     

  • Hennessy Ryan S, Jana S, Tefft Brandon J, Helder Meghana R, Young Melissa D, Hennessy Rebecca R, Stoyles Nicholas J, Lerman A. Supercritical carbon dioxide-based sterilization of decellularized heart valves. JACC. 2017;2:71–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazza G, Al-Akkad W, Telese A, Longato L, Urbani L, Robinson B, Hall A, Kong K, Frenguelli L, Marrone G, et al. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Sci Rep. 2017;7:5534.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sevastianov VI, Basok YB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA, Lazhko AE, Subbot A, Kravchik MV, Khesuani YD, et al. Decellularization of cartilage microparticles: effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res Part A. 2023;111:543–55.

    Article 
    CAS 

    Google Scholar
     

  • Roth SP, Glauche SM, Plenge A, Erbe I, Heller S, Burk J. Automated freeze-thaw cycles for decellularization of tendon tissue—a pilot study. BMC Biotechnol. 2017;17:13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng J, Wang C, Gu Y. Combination of freeze-thaw with detergents: a promising approach to the decellularization of porcine carotid arteries. Bio-Med Mater Eng. 2019;30:191–205.

    Article 
    CAS 

    Google Scholar
     

  • VeDepo MC, Detamore MS, Hopkins RA, Converse GL. Recellularization of decellularized heart valves: progress toward the tissue-engineered heart valve. J Tissue Eng. 2017;8:2041731417726327.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Findeisen K, Morticelli L, Goecke T, Kolbeck L, Ramm R, Höffler H-K, Brandes G, Korossis S, Haverich A, Hilfiker A. Toward acellular xenogeneic heart valve prostheses: histological and biomechanical characterization of decellularized and enzymatically deglycosylated porcine pulmonary heart valve matrices. Xenotransplantation. 2020;27: e12617.

    Article 
    PubMed 

    Google Scholar
     

  • Shin YH, Park SY, Kim JK. Comparison of systematically combined detergent and nuclease-based decellularization methods for acellular nerve graft: an ex vivo characterization and in vivo evaluation. J Tissue Eng Regen Med. 2019;13:1241–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Boone MALM, Draye JP, Verween G, Aiti A, Pirnay J-P, Verbeken G, De Vos D, Rose T, Jennes S, Jemec GBE, del Marmol V. Recellularizing of human acellular dermal matrices imaged by high-definition optical coherence tomography. Exp Dermatol. 2015;24:349–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babu PB, Sreenu M, Raghavender K, Raju N. Haemato-biochemical changes following repair of abdominal wall defects with acellular matrix of swim bladder in rabbits. Indian J Anim Res. 2014;48:459–63.

    Article 

    Google Scholar
     

  • Ma B, Zhai W, Chang J. Progress in development of artificial biological heart valves. Adv Biomed Eng. 2012;33:232–6.

    CAS 

    Google Scholar
     

  • Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17:471–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju YM, Yu B, Koob TJ, Moussy Y, Moussy F. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold. J Biomed Mater Res Part A. 2008;87A:136–46.

    Article 
    CAS 

    Google Scholar
     

  • Zhai W, Chang J, Lin K, Wang J, Zhao Q, Sun X. Crosslinking of decellularized porcine heart valve matrix by procyanidins. Biomaterials. 2006;27:3684–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bortolomai IAO, Sandri M, Draghici E, Fontana E, Campodoni E, Marcovecchio GE, Ferrua F, Perani L, Spinelli A, Canu T, et al. Gene modification and three-dimensional scaffolds as novel tools to allow the use of postnatal thymic epithelial cells for thymus regeneration approaches. Stem Cells Transl Med. 2019;8:1107–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar V, Kumar N, Singh H, Gangwar A, Dewangan R, Kumar A, Rai R. Effects of crosslinking treatments on the physical properties of acellular fish swim bladder. Trends Biomater Artif Organs. 2013;27:93–101.


    Google Scholar
     

  • Kumar V, Kumar N, Gangwar AK, Singh H, Singh R. Comparative histologic and immunologic evaluation of 1,4-butanediol diglycidyl ether crosslinked versus noncrosslinked acellular swim bladder matrix for healing of full-thickness skin wounds in rabbits. J Surg Res. 2015;197:436–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Powell HM, Boyce ST. EDC cross-linking improves skin substitute strength and stability. Biomaterials. 2006;27:5821–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeeman R, Dijkstra PJ, van Wachem PB, van Luyn MJA, Hendriks M, Cahalan PT, Feijen J. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials. 1999;20:921–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials. 1996;17:765–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang C. Enhanced physicochemical properties of collagen by using EDC/NHS-crosslinking. Bull Mater Sci. 2012;35:913–8.

    Article 
    CAS 

    Google Scholar
     

  • Totaro KA, Liao X, Bhattacharya K, Finneman JI, Sperry JB, Massa MA, Thorn J, Ho SV, Pentelute BL. Systematic investigation of EDC/sNHS-mediated bioconjugation reactions for carboxylated peptide substrates. Bioconjugate Chem. 2016;27:994–1004.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Guo C, Shen Q, Kong Q, Wu J, Yang J, Wang Y, Wu H, Peng Z, Yan Y. Study on the preparation and physicochemical properties of fish swim bladder membrane. Chin J Reparat Reconstruct Surg. 2019;33:486–91.


    Google Scholar
     

  • Czerner M, Prudente M, Martucci JF, Rueda F, Fasce LA. Mechanical behavior of cold-water fish gelatin gels crosslinked with 1,4-butanediol diglycidyl ether. J Appl Polym Sci. 2020;137:48985.

    Article 
    CAS 

    Google Scholar
     

  • Zeeman R, Dijkstra PJ, van Wachem PB, van Luyn MJA, Hendriks M, Cahalan PT, Feijen J. Crosslinking and modification of dermal sheep collagen using 1,4-butanediol diglycidyl ether. J Biomed Mater Res. 1999;46:424–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeeman R, Dijkstra PJ, van Wachem PB, van Luyn MJA, Hendriks M, Cahalan PT, Feijen J. The kinetics of 1,4-butanediol diglycidyl ether crosslinking of dermal sheep collagen. J Biomed Mater Res. 2000;51:541–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lehmann N, Christ T, Daugs A, Bloch O, Holinski S. EDC cross-linking of decellularized tissue: a promising approach? Tissue Eng Part A. 2017;23:675–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gajiwala K, Gajiwala AL. Evaluation of lyophilised, gamma-irradiated amnion as a biological dressing. Cell Tissue Banking. 2004;5:73–80.

    Article 
    PubMed 

    Google Scholar
     

  • Wang X, You C, Hu X, Zheng Y, Li Q, Feng Z, Sun H, Gao C, Han C. The roles of knitted mesh-reinforced collagen–chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats. Acta Biomater. 2013;9:7822–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Metcalfe AD, Ferguson MWJ. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface. 2007;4:413–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adamian AA, Dobysh SV, Kilimchuk LE, Shandurenko IN, Chekmareva IA: [Development of new biologically active dressings and methodology of their use]. Khirurgiia 2004:10–14.

  • Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463:127–36.

    Article 
    PubMed 

    Google Scholar
     

  • Zou Y, Zhang C, Cao C, Wang Y, Li H. Present situation and prospect of biological dressings. Leather Sci Eng. 2005;15:31–5.

    CAS 

    Google Scholar
     

  • Altman D, Mellgren A, Blomgren B, López A, Zetterström J, Nordenstam J, Falconer C. Clinical and histological safety assessment of rectocele repair using collagen mesh. Acta Obstet Gynecol Scand. 2004;83:995–1000.

    Article 
    PubMed 

    Google Scholar
     

  • Guan J, Wu J: Medical application of collagen. Bull Acad Mil Med Sci 1997:66–69.

  • Chen Y, Jin H, Yang F, Jin S, Liu C, Zhang L, Huang J, Wang S, Yan Z, Cai X, et al. Physicochemical, antioxidant properties of giant croaker (Nibea japonica) swim bladders collagen and wound healing evaluation. Int J Biol Macromol. 2019;138:483–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Y, Jin S, Li X, Li X, Hu X, Chen Y, Huang F, Yang Z, Yu F, Ding G: Physicochemical properties and biocompatibility evaluation of collagen from the skin of giant croaker (Nibea japonica). Marine Drugs 2018, 16.

  • Zhao W-H, Chi C-F, Zhao Y-Q, Wang B. Preparation, physicochemical and antioxidant properties of acid- and pepsin-soluble collagens from the swim bladders of miiuy croaker (Miichthys miiuy). Mar Drugs. 2018;16:161.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gock H, Murray-Segal L, Salvaris E, Cowan P, d’Apice AJF. Allogeneic sensitization is more effective than xenogeneic sensitization in eliciting gal-mediated skin graft rejection1. Transplantation. 2004;77:751–3.

    Article 
    PubMed 

    Google Scholar
     

  • Bhanu B, Makkena S, Raghavender K, Raju N. Acellular matrix of swim bladder for the reconstruction of abdominal wall defects in rabbit. Int J Vet Sci. 2014;3:192–7.


    Google Scholar
     

  • Baldursson BT, Kjartansson H, Konrádsdóttir F, Gudnason P, Sigurjonsson GF, Lund SH. Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study. Int J Low Extrem Wounds. 2015;14:37–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang H-C, Chang Y, Hsu C-K, Lee M-H, Sung H-W. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials. 2004;25:3541–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar V, Kumar N, Singh H, Mathew DD, Singh K, Ahmad RA. An acellular aortic matrix of buffalo origin crosslinked with 1-ethyl-3-3-dimethylaminopropylcarbodiimide hydrochloride for the repair of inguinal hernia in horses. Equine Vet Educ. 2013;25:398–402.

    Article 

    Google Scholar
     

  • Sairyo K, Matsuura T, Higashino K, Sakai T, Takata Y, Goda Y, Suzue N, Hamada D, Goto T, Nishisho T, et al. Surgery related complications in percutaneous endoscopic lumbar discectomy under local anesthesia. J Med Invest. 2014;61:264–9.

    Article 
    PubMed 

    Google Scholar
     

  • Li H, Dai L-Y. A systematic review of complications in cervical spine surgery for ossification of the posterior longitudinal ligament. The Spine Journal. 2011;11:1049–57.

    Article 
    PubMed 

    Google Scholar
     

  • Meng F, Modo M, Badylak SF. Biologic scaffold for CNS repair. Regen Med. 2014;9:367–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomita T, Hayashi N, Okabe M, Yoshida T, Hamada H, Endo S, Nikaido T. New dried human amniotic membrane is useful as a substitute for dural repair after skull base surgery. J Neurol Surg B Skull Base. 2012;73:302–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pogorielov M, Kravtsova A, Reilly G, Deineka V, Tetteh G, Kalinkevich O, Pogorielova O, Moskalenko R, Tkach G. Experimental evaluation of new chitin–chitosan graft for duraplasty. J Mater Sci Mater Med. 2017;28:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Haïk S, Brandel J-P. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses. Infect Genet Evol. 2014;26:303–12.

    Article 
    PubMed 

    Google Scholar
     

  • Kobayashi A, Matsuura Y, Mohri S, Kitamoto T. Distinct origins of dura mater graft-associated Creutzfeldt-Jakob disease: past and future problems. Acta Neuropathol Commun. 2014;2:1–8.

    Article 

    Google Scholar
     

  • Azzam D, Romiyo P, Nguyen T, Sheppard JP, Alkhalid Y, Lagman C, Prashant GN, Yang I. Dural repair in cranial surgery is associated with moderate rates of complications with both autologous and nonautologous dural substitutes. World Neurosurg. 2018;113:244–8.

    Article 
    PubMed 

    Google Scholar
     

  • Al-Bishari AM, Al-Shaaobi BA, Al-Bishari AA, Al-Baadani MA, Yu L, Shen J, Cai L, Shen Y, Deng Z, Gao P. Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold. Front Bioeng Biotechnol. 2022;10: 975431.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He Z, Rabiee N, Wei Q, Hou Y, Yan B, Xie J. Editorial: Composites and surface and interface engineering (CSIE): preparation and modification of biomaterials and their anti-biofouling ability and surface wettability. Front Bioeng Biotechnol. 2023;11:1230571.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Jin D, Fan Y, Zhang K, Yang T, Zou C, Yin A. Preparation and performance of random- and oriented-fiber membranes with core–shell structures via coaxial electrospinning. Front Bioeng Biotechnol. 2023;10:1114034.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma L, Gui L. Research progress of repairing materials for dura mater defect. China Med Cosmetol. 2017;7:78–82.


    Google Scholar
     

  • Zerris VA, James KS, Roberts JB, Bell E, Heilman CB. Repair of the dura mater with processed collagen devices. J Biomed Mater Res B Appl Biomater. 2007;83B:580–8.

    Article 
    CAS 

    Google Scholar
     

  • Takeuchi A, Kobayashi A, Parchi P, Yamada M, Morita M, Uno S, Kitamoto T. Distinctive properties of plaque-type dura mater graft-associated Creutzfeldt-Jakob disease in cell-protein misfolding cyclic amplification. Lab Invest. 2016;96:581–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore RC, Lee IY, Silverman GL, Harrison PM, Strome R, Heinrich C, Karunaratne A, Pasternak SH, Chishti MA, Liang Y, et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel11Edited by P. E Wright J Mol Biol. 1999;292:797–817.

    Article 
    CAS 

    Google Scholar
     

  • Shao Y, Yu Y, Pei C-G, Qu Y, Gao G-P, Yang J-L, Zhou Q, Yang L, Liu Q-P. The expression and distribution of α-Gal gene in various species ocular surface tissue. Int J Ophthalmol. 2012;5:543–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Mu L, Zhang F, Sun Y, Chen Q, Xie C, Wang H. A novel fish collagen scaffold as dural substitute. Mater Sci Eng, C. 2017;80:346–51.

    Article 
    CAS 

    Google Scholar
     

  • Zioupos P, Barbenel JC, Fisher J. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves. J Biomed Mater Res. 1994;28:49–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrotta I, Russo E, Camastra C, Filice G, Di Mizio G, Colosimo F, Ricci P, Tripepi S, Amorosi A, Triumbari F, Donato G. New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology. 2011;59:504–13.

    Article 
    PubMed 

    Google Scholar
     

  • Bailey MT, Pillarisetti S, Xiao H, Vyavahare NR. Role of elastin in pathologic calcification of xenograft heart valves. J Biomed Mater Res Part A. 2003;66A:93–102.

    Article 
    CAS 

    Google Scholar
     

  • Munnelly AE, Cochrane L, Leong J, Vyavahare NR. Porcine vena cava as an alternative to bovine pericardium in bioprosthetic percutaneous heart valves. Biomaterials. 2012;33:1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah SR, Vyavahare NR. The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves. Biomaterials. 2008;29:1645–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li ML, Zheng C, Wu BG, Ding KL, Zhang SM, Huang XY, Lei Y, Wang YB. Glycidyl methacrylate-crosslinked fish swim bladder as a novel cardiovascular biomaterial with improved antithrombotic and anticalcification properties. J Biomater Appl. 2022;36:1188–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai H, Sun P, Wu H, Wei S, Xie B, Wang W, Hou Y, Li Ja, Dardik A, Li Z: The application of tissue-engineered fish swim bladder vascular graft. Commun Biol 2021, 4.

  • Yang L, Xie S, Ding K, Lei Y, Wang Y. The study of dry biological valve crosslinked with a combination of carbodiimide and polyphenol. Regenerat Biomater. 2021;8:rbaa049.

    Article 

    Google Scholar
     

  • Guo H, Liu X, Tian M, Liu G, Yuan Y, Ye X, Zhang H, Xiao L, Wang S, Hong Y, et al. Effects of dietary collagen cofactors and hydroxyproline on the growth performance, textural properties and collagen deposition in swim bladder of Nibea coibor based on orthogonal array analysis. Aquac Rep. 2022;27: 101375.

    Article 

    Google Scholar
     

  • Dong Y, Dai Z. Physicochemical, structural and antioxidant properties of collagens from the swim bladder of four fish species. Mar Drugs. 2022. https://doi.org/10.3390/md20090550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Hasan A, et al. China’s fish maw demand and its implications for fisheries in source countries. Mar Policy. 2021;132: 104696.

    Article 

    Google Scholar
     

  • Wen J, Zeng L, Sun Y, Chen D, Xu Y, Luo P, Zhao Z, Yu Z, Fan S. Authentication and traceability of fish maw products from the market using DNA sequencing. Food Control. 2015;55:185–9.

    Article 
    CAS 

    Google Scholar
     

  • Jing W, Ling Z, Ziming C, Youhou X. Comparison of nutritional quality in fish maw product of croaker Protonibea diacanthus and Perch Lates niloticus. J Ocean Univ China. 2016;15:726–30.

    Article 

    Google Scholar
     

  • Wen J, Zeng L, Xu Y, Sun Y, Chen Z, Fan S. Proximate composition, amino acid and fatty acid composition of fish maws. Nat Prod Res. 2016;30:214–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai C, Dai L, Yu F-J, Li X-N, Wang G-X, Chen J, Wang C, Lu Y-P. Chemical and biological characteristics of hydrolysate of crucian carp swim bladder: Focus on preventing ulcerative colitis. J Funct Foods. 2020;75: 104256.

    Article 
    CAS 

    Google Scholar
     

  • Clarke S. Understanding pressures on fishery resources through trade statistics: a pilot study of four products in the Chinese dried seafood market. Fish Fish. 2004;5:53–74.

    Article 

    Google Scholar
     

  • Cai S-Y, Wang Y-M, Zhao Y-Q, Chi C-F, Wang B. Cytoprotective effect of antioxidant pentapeptides from the protein hydrolysate of swim bladders of miiuy croaker (Miichthys miiuy) against H2O2-mediated human umbilical vein endothelial cell (HUVEC) Injury. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20215425.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng J, Tian X, Xu B, Yuan F, Gong J, Yang Z. Collagen peptides from swim bladders of giant croaker (Nibea japonica) and their protective effects against H2O2-induced oxidative damage toward human umbilical vein endothelial cells. Mar Drugs. 2020;18:430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Li G, Miao Y, Wu X. preparation and characterization of pepsin-solubilized type I collagen from the scales of snakehead (Ophiocephalus argus). J Food Biochem. 2009;33:20–37.

    Article 
    CAS 

    Google Scholar
     

  • Regenstein JM, Zhou P: 13 – Collagen and gelatin from marine by-products. In: Shahidi F eds., Maximising the Value of Marine By-Products. Woodhead Publishing; 2007: 279–303

  • Kittiphattanabawon P, Benjakul S, Visessanguan W, Nagai T, Tanaka M. Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chem. 2005;89:363–72.

    Article 
    CAS 

    Google Scholar
     

  • Mredha MTI, Zhang X, Nonoyama T, Nakajima T, Kurokawa T, Takagid Y, Gong JP. Swim bladder collagen forms hydrogel with macroscopic superstructure by diffusion induced fast gelation. J Mater Chem B. 2015;3:7658–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Ookawa M, Tan Y, Ura K, Adachi S, Takagi Y. Biochemical characterisation and assessment of fibril-forming ability of collagens extracted from Bester sturgeon Huso huso×Acipenser ruthenus. Food Chem. 2014;160:305–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alipal J, Mohd Pu’ad NAS, Lee TC, Nayan NHM, Sahari N, Basri H, Idris MI, Abdullah HZ. A review of gelatin: properties, sources, process, applications, and commercialisation. Mater Today Proc. 2021;42:240–50.

    Article 
    CAS 

    Google Scholar
     

  • Yuan Z, Ye X, Hou Z, Chen S. Sustainable utilization of proteins from fish processing by-products: extraction, biological activities and applications. Trends Food Sci Technol. 2024;143: 104276.

    Article 
    CAS 

    Google Scholar
     

  • Karim AA, Bhat R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids. 2009;23:563–76.

    Article 
    CAS 

    Google Scholar
     

  • Alfaro AdT, et al. Characteristics, functional properties, applications and future potentials. Food Eng Rev. 2015;7:33–44.

    Article 
    CAS 

    Google Scholar
     

  • Yu E, Pan C, Luo X, Ruan Q, Chen W, Fang Y, Wang K, Qin Y, Lv M, Ma H. Structural characteristics, component interactions and functional properties of gelatins from three fish skins extracted by five methods. Int J Biol Macromol. 2023;248: 125813.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv L-C, Huang Q-Y, Ding W, Xiao X-H, Zhang H-Y, Xiong L-X. Fish gelatin: The novel potential applications. J Funct Foods. 2019;63: 103581.

    Article 
    CAS 

    Google Scholar
     

  • Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB, Erggelet C, Minas T, Peterson L. Articular cartilage lesions of the knee. Am J Sports Med. 1998;26:853–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buckwalter J, Mankin H. Articular cartilage repair and transplantation. Arthritis Rheum. 1998;41:1331–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao N, Yuan W. Highly adhesive and dual-crosslinking hydrogel via one-pot self-initiated polymerization for efficient antibacterial, antifouling and full-thickness wound healing. Compos B Eng. 2022;230: 109525.

    Article 
    CAS 

    Google Scholar
     

  • Yunoki S, Nagai N, Suzuki T, Munekata M. Novel biomaterial from reinforced salmon collagen gel prepared by fibril formation and cross-linking. J Biosci Bioeng. 2004;98:40–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Liu W, Li G, Shi B, Miao Y, Wu X. Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodon idella). Food Chem. 2007;103:906–12.

    Article 
    CAS 

    Google Scholar
     

  • Lee K-J, et al. Biochemical characterization of collagen from the starfish Asterias amurensis. J Korean Soc Appl Biol Chem. 2009;52:221–6.

    Article 
    CAS 

    Google Scholar
     

  • Addad S, Exposito J-Y, Faye C, Ricard-Blum S, Lethias C: Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Marine Drugs 2011, 9.

  • Nomura Y, Yamano M, Shirai K. Renaturation of α1 chains from shark skin collagen type 1. J Food Sci. 1995;60:1233–6.

    Article 
    CAS 

    Google Scholar
     

  • El-Rashidy AA, Gad A, et al. Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen. Int J Biol Macromol. 2015;79:618–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayne J, Robinson JJ. Comparative analysis of the structure and thermal stability of sea urchin peristome and rat tail tendon collagen. J Cell Biochem. 2002;84:567–74.

    Article 
    PubMed 

    Google Scholar
     

  • Rose S, Prevoteau A, Elzière P, Hourdet D, Marcellan A, Leibler L. Nanoparticle solutions as adhesives for gels and biological tissues. Nature. 2014;505:382–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monnier CA, DeMartini DG, Waite JH. Intertidal exposure favors the soft-studded armor of adaptive mussel coatings. Nat Commun. 2018;9:3424.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma C, Su J, Sun Y, Feng Y, Shen N, Li B, Liang Y, Yang X, Wu H, Zhang H, et al. Significant upregulation of alzheimer’s beta-amyloid levels in a living system induced by extracellular elastin polypeptides. Angew Chem Int Edn. 2019;58:18703–9.

    Article 
    CAS 

    Google Scholar
     

  • Sun J, Su J, Ma C, Göstl R, Herrmann A, Liu K, Zhang H. Fabrication and mechanical properties of engineered protein-based adhesives and fibers. Adv Mater. 2020;32:1906360.

    Article 
    CAS 

    Google Scholar
     

  • Ma C, Su J, Li B, Herrmann A, Zhang H, Liu K. Solvent-free plasticity and programmable mechanical behaviors of engineered proteins. Adv Mater. 2020;32:1907697.

    Article 
    CAS 

    Google Scholar
     

  • Xiao L, Wang Z, Sun Y, Li B, Wu B, Ma C, Petrovskii VS, Gu X, Chen D, Potemkin II, et al. An artificial phase-transitional underwater bioglue with robust and switchable adhesion performance. Angew Chem Int Edn. 2021;60:12082–9.

    Article 
    CAS 

    Google Scholar
     

  • Matsumoto T, Nakanishi Y, Hongo C, Hakukawa H, Horiuchi S, Nishino T. Adhesive interphase analyses of isotactic polypropylene and cyanoacrylate with cobalt complex primers. Polymer. 2018;137:63–71.

    Article 
    CAS 

    Google Scholar
     

  • Pascual G, Rodríguez M, Mesa-Ciller C, Pérez-Köhler B, Fernández-Gutiérrez M, San Román J, Bellón JM. Sutures versus new cyanoacrylates in prosthetic abdominal wall repair: a preclinical long-term study. J Surg Res. 2017;220:30–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stefanov T, Ryan B, Ivanković A, Murphy N. Mechanical bulk properties and fracture toughness of composite-to-composite joints of an elastomer-toughened ethyl cyanoacrylate adhesive. Int J Adhes Adhes. 2016;68:142–55.

    Article 
    CAS 

    Google Scholar
     

  • Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrínyi M, Osada Y, Chen YM. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater. 2015;25:1352–9.

    Article 
    CAS 

    Google Scholar
     

  • Purcell BP, Lobb D, Charati MB, Dorsey SM, Wade RJ, Zellars KN, Doviak H, Pettaway S, Logdon CB, Shuman JA, et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat Mater. 2014;13:653–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang D-A, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater. 2007;6:385–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barua S, Chattopadhyay P, Karak N. s-Triazine-based biocompatible hyperbranched epoxy adhesive with antibacterial attributes for sutureless surgical sealing. J Mater Chem B. 2015;3:5877–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao S, Li S, Li M, Xu L, Ding H, Xia J, Zhang M, Huang K. A thermal self-healing polyurethane thermoset based on phenolic urethane. Polym J. 2017;49:775–81.

    Article 
    CAS 

    Google Scholar
     

  • Burdurlu E, Kılıç Y, et al. The shear strength of Calabrian pine (Pinus brutia Ten.) bonded with polyurethane and polyvinyl acetate adhesives. J Appl Polym Sci. 2006;99:3050–61.

    Article 
    CAS 

    Google Scholar
     

  • Konishi G-i, et al. Direct synthesis of functional novolacs and their polymer reactions. Polym J. 2010;42:443–9.

    Article 
    CAS 

    Google Scholar
     

  • Yuk H, Varela CE, Nabzdyk CS, Mao X, Padera RF, Roche ET, Zhao X. Dry double-sided tape for adhesion of wet tissues and devices. Nature. 2019;575:169–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Wang D, Wang L-H, Liu W, Chiu A, Shariati K, Liu Q, Wang X, Zhong Z, Webb J, et al. An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery. Adv Mater. 2020;32:2001628.

    Article 
    CAS 

    Google Scholar
     

  • Taboada GM, Yang K, Pereira MJN, Liu SS, Hu Y, Karp JM, Artzi N, Lee Y. Overcoming the translational barriers of tissue adhesives. Nat Rev Mater. 2020;5:310–29.

    Article 

    Google Scholar
     

  • Conrad K, Yoskovitch A. The use of fibrin glue in the correction of pollybeak deformity. Arch Facial Plast Surg. 2003;5:522–7.

    Article 
    PubMed 

    Google Scholar
     

  • Zong D, Cao L, Li Y, Yin X, Si Y, Yu J, Ding B. Interlocked dual-network and superelastic electrospun fibrous sponges for efficient low-frequency noise absorption. Small Structures. 2020;1:2000004.

    Article 

    Google Scholar
     

  • Zhang C, Pu K. Recent progress on activatable nanomedicines for immunometabolic combinational cancer therapy. Small Struct. 2020;1:2000026.

    Article 

    Google Scholar
     

  • Román JK, Wilker JJ. Cooking chemistry transforms proteins into high-strength adhesives. J Am Chem Soc. 2019;141:1359–65.

    Article 
    PubMed 

    Google Scholar
     

  • Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584:535–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander RM. Visco-elastic properties of the tunica externa of the swimbladder in cyprinidae. J Exp Biol. 1961;38:747–57.

    Article 

    Google Scholar
     

  • Li Y, Yang L, Wu S, Chen J, Lin H. Structural, functional, rheological, and biological properties of the swim bladder collagen extracted from grass carp (Ctenopharyngodon idella). LWT. 2022;153: 112518.

    Article 
    CAS 

    Google Scholar
     

  • Sripriya R, Kumar R. A novel enzymatic method for preparation and characterization of collagen film from swim bladder of fish Rohu (Labeo rohita). Food Nutr Sci. 2015;6:1468.

    CAS 

    Google Scholar