Nanotechnology

Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms | Journal of Nanobiotechnology


  • El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater. 2017;62:1–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai W, Leng X, Wang J, Cheng J, Hu X, Ao Y. Quadriceps tendon autograft versus bone-patellar tendon–bone and hamstring tendon autografts for anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2022;50(12):3425–39.

    Article 
    PubMed 

    Google Scholar
     

  • Wang B, Feng C, Liu Y, Mi F, Dong J. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: a review. Jpn Dent Sci Rev. 2022;58:233–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: advances, challenges, and prospects. Bioeng Transl Med. 2022;7(1): e10262.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu M, Li W, Jiang L, Li X. Recent progress of rare earth doped hydroxyapatite nanoparticles: luminescence properties, synthesis and biomedical applications. Acta Biomater. 2022;148:22–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng J, Cui Y, Wang Y. Rare earth-doped nanocrystals for bioimaging in the near-infrared region. J Mater Chem B. 2022;10(42):8596–615.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao PP, Ge YW, Liu XL, Ke QF, Zhang JW, Zhu ZA, et al. Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chem Eng J. 2020;381: 122694.

    Article 
    CAS 

    Google Scholar
     

  • Ge YW, Liu XL, Yu DG, Zhu ZA, Ke QF, Mao YQ, et al. Graphene-modified CePO4 nanorods effectively treat breast cancer-induced bone metastases and regulate macrophage polarization to improve osteo-inductive ability. J Nanobiotechnology. 2021;19(1):11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei F, Neal CJ, Sakthivel TS, Kean T, Seal S, Coathup MJ. Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. Mater Sci Eng C. 2021;124: 112041.

    Article 
    CAS 

    Google Scholar
     

  • Cai Z, Guo Z, Yang C, Wang F, Zhang P, Wang Y, et al. Surface biofunctionalization of gadolinium phosphate nanobunches for boosting osteogenesis/chondrogenesis differentiation. Int J Mol Sci. 2023;24(3):2032.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren N, Liang N, Yu X, Wang A, Xie J, Sun C. Ligand-free upconversion nanoparticles for cell labeling and their effects on stem cell differentiation. Nanotechnology. 2020;31(14): 145101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren N, Feng Z, Liang N, Xie J, Wang A, Sun C, et al. NaGdF4: Yb/Er nanoparticles of different sizes for tracking mesenchymal stem cells and their effects on cell differentiation. Mater Sci Eng C. 2020;111: 110827.

    Article 
    CAS 

    Google Scholar
     

  • Vijayan V, Sreekumar S, Ahina KM, Lakra R, Kiran MS. Lanthanum oxide nanoparticles reinforced collagen ƙ-carrageenan hydroxyapatite biocomposite as angio-osteogenic biomaterial for in vivo osseointegration and bone repair. Adv Biol. 2023;7:2300039.

    Article 
    CAS 

    Google Scholar
     

  • Chu M, Sun Z, Fan Z, Yu D, Mao Y, Guo Y. Bi-directional regulation functions of lanthanum-substituted layered double hydroxide nanohybrid scaffolds via activating osteogenesis and inhibiting osteoclastogenesis for osteoporotic bone regeneration. Theranostics. 2021;11(14):6717–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao S, Yu D, Tang Z, Wu H, Zhang H, Wang N, et al. Conformationally regulated “nanozyme-like” cerium oxide with multiple free radical scavenging activities for osteoimmunology modulation and vascularized osseointegration. Bioact Mater. 2024;34:64–79.

    CAS 
    PubMed 

    Google Scholar
     

  • Ren S, Zhou Y, Zheng K, Xu X, Yang J, Wang X, et al. Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioact Mater. 2022;7:242–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, et al. The advances of ceria nanoparticles for biomedical applications in orthopaedics. Int J Nanomedicine. 2020;15:7199–214.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu M, Shu M, Yan J, Liu X, Wang R, Hou Z, et al. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction. Nanoscale. 2021;13(2):1181–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng XY, Hu M, Liao F, Yang F, Ke QF, Guo YP, et al. La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering. Biomater Sci. 2019;7(4):1565–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu DY, Lu B, Yin JH, Ke QF, Xu H, Zhang CQ, et al. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β; pathway and facilitate bone repair in vivo. Int J Nanomedicine. 2019;14:1085–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav S, Chamoli S, Kumar P, Maurya PK. Structural and functional insights in polysaccharides coated cerium oxide nanoparticles and their potential biomedical applications: a review. Int J Biol Macromol. 2023;246: 125673.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang K, Cao W, Hao X, Xue X, Zhao J, Liu J, et al. Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway. Nanoscale. 2013;5(3):1205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Tang Y, Ke Q, Yin W, Zhang C, Guo Y, et al. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. J Mater Chem B. 2020;8(24):5280–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patra CR, Bhattacharya R, Patra S, Vlahakis NE, Gabashvili A, Koltypin Y, et al. Pro-angiogenic properties of europium (III) hydroxide nanorods. Adv Mater. 2008;20(4):753–6.

    Article 
    CAS 

    Google Scholar
     

  • Pinna A, Torki Baghbaderani M, Vigil Hernández V, Naruphontjirakul P, Li S, McFarlane T, et al. Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment. Acta Biomater. 2021;122:365–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miyawaki J, Matsumura S, Yuge R, Murakami T, Sato S, Tomida A, et al. Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS Nano. 2009;3(6):1399–406.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh S, Kumar A, Karakoti A, Seal S, Self WT. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst. 2010;6(10):1813.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahle JT, Livi K, Arai Y. Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere. 2015;119:1365–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao C, Jin Y, Jia G, Suo X, Liu H, Liu D, et al. Y2O3 nanoparticles caused bone tissue damage by breaking the intracellular phosphate balance in bone marrow stromal cells. ACS Nano. 2019;13(1):313–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikolova V, Kircheva N, Dobrev S, Angelova S, Dudev T. Lanthanides as calcium mimetic species in calcium-signaling/buffering proteins: the effect of lanthanide type on the Ca2+/Ln3+ competition. Int J Mol Sci. 2023;24(7):6297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pałasz A, Czekaj P. Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol. 2000;47(4):1107–14.

    Article 
    PubMed 

    Google Scholar
     

  • Chandran L, Am B. Apatite matrix substituted with biologically essential rare earth elements as an artificial hard tissue substitute: systematic physicochemical and biological evaluation. J Biomed Mater Res A. 2021;109(6):821–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi T, Chattopadhyay N, Kifor O, Sanders JL, Brown EM. Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line. Biochem Biophys Res Commun. 2000;279(2):363–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang XC, Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science. 1989;243(4894):1068–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mlinar B, Enyeart JJ. Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J Physiol. 1993;469(1):639–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo L, Davidson RM. Extracellular Ca2+ increases cytosolic free Ca2+ in freshly isolated rat odontoblasts. J Bone Miner Res. 1999;14(8):1357–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Salter DM. Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and β-catenin in human articular chondrocytes after mechanical stimulation. J Bone Miner Res. 2000;15(8):1501–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brayshaw LL, Smith RCG, Badaoui M, Irving JA, Price SR. Lanthanides compete with calcium for binding to cadherins and inhibit cadherin-mediated cell adhesion. Metallomics. 2019;11(5):914–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edington SC, Gonzalez A, Middendorf TR, Halling DB, Aldrich RW, Baiz CR. Coordination to lanthanide ions distorts binding site conformation in calmodulin. Proc Natl Acad Sci. 2018;115(14):E3126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem. 2006;97(1):56–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma S, Sudhakara P, Omran AAB, Singh J, Ilyas RA. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers. 2021;13(17):2898.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao Q, Wang F, Xu F, Leung CM, Wang T, Tang Y, et al. Electric field-induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics. ACS Appl Mater Interf. 2015;7(9):5066–75.

    Article 
    CAS 

    Google Scholar
     

  • Jia Q, Lu H, Luo J, Zhang Y, Ni H, Zhang F, et al. Organic-inorganic rare-earth double perovskite ferroelectric with large piezoelectric response and ferroelasticity for flexible composite energy harvesters. Small. 2023. https://doi.org/10.1002/smll.202306989.

    Article 
    PubMed 

    Google Scholar
     

  • Fapeng Yu, Zhang S, Zhao X, Yuan D, Qin L, Wang Q-M, et al. Dielectric and electromechanical properties of rare earth calcium oxyborate piezoelectric crystals at high temperatures. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(4):868–73.

    Article 

    Google Scholar
     

  • Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Remote control of cellular functions: the role of smart nanomaterials in the medicine of the future. Adv Healthc Mater. 2017;6(9):1700002.

    Article 

    Google Scholar
     

  • Qian W, Yang W, Zhang Y, Bowen CR, Yang Y. Piezoelectric materials for controlling electro-chemical processes. Nano Micro Lett. 2020;12(1):149.

    Article 
    CAS 

    Google Scholar
     

  • Yan P, Qin Y, Xu Z, Han F, Wang Y, Wen Z, et al. Highly transparent Eu-doped 0.72PMN-0.28PT ceramics with excellent piezoelectricity. ACS Appl Mater Interfaces. 2021;13(45):54210–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng F, Tian X, Fang Z, Lin J, Lu Y, Gao W, et al. Sm-doped PIN-PMN-PT transparent ceramics with high curie temperature, good piezoelectricity, and excellent electro-optical properties. ACS Appl Mater Interfaces. 2023;15(5):7053–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garain S, Sinha TK, Adhikary P, Henkel K, Sen S, Ram S, et al. Self-poled transparent and flexible UV light-emitting cerium complex–PVDF composite: a high-performance nanogenerator. ACS Appl Mater Interfaces. 2015;7(2):1298–307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren HM, Wang HW, Jiang YF, Tao ZX, Mu CY, Li G. Proton conductive lanthanide-based metal-organic frameworks: synthesis strategies, structural features, and recent progress. Top Curr Chem. 2022;380(2):9.

    Article 
    CAS 

    Google Scholar
     

  • Hajjiah A, Samir E, Shehata N, Salah M. Lanthanide-doped ceria nanoparticles as backside coaters to improve silicon solar cell efficiency. Nanomaterials. 2018;8(6):357.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen K, Liang F, Xue D. La3+: Ni–Cl oxyhydroxide gels with enhanced electroactivity as positive materials for hybrid supercapacitors. Dalton Trans. 2020;49(4):1107–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun H, Xu J, Wang Y, Shen S, Xu X, Zhang L, et al. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater. 2023;24:477–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei F, Neal CJ, Sakthivel TS, Seal S, Kean T, Razavi M, et al. Cerium oxide nanoparticles protect against irradiation-induced cellular damage while augmenting osteogenesis. Mater Sci Eng C. 2021;126: 112145.

    Article 
    CAS 

    Google Scholar
     

  • Schröder K. NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med. 2019;132:67–72.

    Article 
    PubMed 

    Google Scholar
     

  • Gunawan C, Lord MS, Lovell E, Wong RJ, Jung MS, Oscar D, et al. Oxygen-vacancy engineering of cerium-oxide nanoparticles for antioxidant activity. ACS Omega. 2019;4(5):9473–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu K, Chang M, Wang Z, Yang H, Jia Y, Xu W, et al. Multienzyme-mimicking LaCoO3 nanotrigger for programming cancer-cell pyroptosis. Adv Mater. 2023;35(35):2302961.

    Article 
    CAS 

    Google Scholar
     

  • Grebowski J, Litwinienko G. Metallofullerenols in biomedical applications. Eur J Med Chem. 2022;238: 114481.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maksimchuk PO, Hubenko KO, Seminko VV, Karbivskii VL, Tkachenko AS, Onishchenko AI, et al. High antioxidant activity of gadolinium-yttrium orthovanadate nanoparticles in cell-free and biological milieu. Nanotechnology. 2021;33(5):055701.

    Article 

    Google Scholar
     

  • Tang KS. Antioxidant and anti-inflammatory properties of yttrium oxide nanoparticles: new insights into alleviating diabetes. Curr Diabetes Rev. 2021;17(4):496–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pratsinis A, Kelesidis GA, Zuercher S, Krumeich F, Bolisetty S, Mezzenga R, et al. Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano. 2017;11(12):12210–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thu Huong T, Thi Phuong H, Thi Vinh L, Thi Khuyen H, Thi Thao D, Dac Tuyen L, et al. Upconversion NaYF4: Yb3+/Er3+ @silica-TPGS bio-nano complexes: synthesis, characterization, and in vitro tests for labeling cancer cells. J Phys Chem B. 2021;125(34):9768–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song X, Shang P, Sun Z, Lu M, You G, Yan S, et al. Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomed. 2019;14(19):2519–33.

    Article 
    CAS 

    Google Scholar
     

  • Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J Nanobiotechnology. 2018;16(1):87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin J, Cai R, Sun B, Dong J, Zhao Y, Miao Q, et al. Gd@C82 (OH)22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway. J Mater Chem B. 2018;6(36):5802–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Augustine R, Dalvi YB, Yadu Nath VK, Varghese R, Raghuveeran V, Hasan A, et al. Yttrium oxide nanoparticle loaded scaffolds with enhanced cell adhesion and vascularization for tissue engineering applications. Mater Sci Eng C. 2019;103: 109801.

    Article 
    CAS 

    Google Scholar
     

  • Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: promising biomedical applications. J Controll Release. 2021;338:164–89.

    Article 
    CAS 

    Google Scholar
     

  • Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun. 2010;46(16):2736.

    Article 
    CAS 

    Google Scholar
     

  • Li K, Shen Q, Xie Y, You M, Huang L, Zheng X. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization. J Biomater Appl. 2017;31(7):1062–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mellado-Vázquez R, García-Hernández M, López-Marure A, López-Camacho P, De Jesús M-R, Beltrán-Conde H. Sol-gel synthesis and antioxidant properties of yttrium oxide nanocrystallites incorporating P-123. Materials. 2014;7(9):6768–78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olvera Salazar A, García Hernández M, López Camacho PY, López Marure A, Reyes De La Torre AI, Morales Ramírez ÁDJ, et al. Influence of Eu3+ doping content on antioxidant properties of Lu2O3 sol-gel derived nanoparticles. Mater Sci Eng C. 2016;69:850–5.

    Article 
    CAS 

    Google Scholar
     

  • Hu W, Yie KHR, Liu C, Zhu J, Huang Z, Zhu B, et al. Improving the valence self-reversible conversion of cerium nanoparticles on titanium implants by lanthanum doping to enhance ROS elimination and osteogenesis. Dent Mater. 2022;38(8):1362–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basuthakur P, Roy A, Patra CR, Chakravarty S. Therapeutic potentials of terbium hydroxide nanorods for amelioration of hypoxia-reperfusion injury in cardiomyocytes. Biomater Adv. 2023;153: 213531.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Y, Zhao S, Gu D, Zhu B, Liu H, Wu W, et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS–NFκB pathway. Nanoscale. 2022;14(7):2628–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B. 2020;8(41):9404–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: from understandings to therapeutic applications. Biomaterials. 2021;277: 121114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng K, Torre E, Bari A, Taccardi N, Cassinelli C, Morra M, et al. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Mater Today Bio. 2020;5: 100041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanana H, Turcotte P, Dubé M, Gagnon C, Gagné F. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after chronic exposure. Ecotoxicol Environ Saf. 2018;165:662–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costantino MD, Schuster A, Helmholz H, Meyer-Rachner A, Willumeit-Römer R, Luthringer-Feyerabend BJC. Inflammatory response to magnesium-based biodegradable implant materials. Acta Biomater. 2020;101:598–608.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li YR, Zhu H. Nanoceria potently reduce superoxide fluxes from mitochondrial electron transport chain and plasma membrane NADPH oxidase in human macrophages. Mol Cell Biochem. 2021;476(12):4461–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Kim HY, Song SY, Go SH, Sohn HS, Baik S, et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano. 2019;13(3):3206–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloomer SA, Moyer ED, Brown KE, Kregel KC. Aging results in accumulation of M1 and M2 hepatic macrophages and a differential response to gadolinium chloride. Histochem Cell Biol. 2020;153(1):37–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lachaud C, Da Silva D, Amelot N, Béziat C, Brière C, Cotelle V, et al. Dihydrosphingosine-induced programmed cell death in tobacco BY-2 cells is independent of H2O2 production. Mol Plant. 2011;4(2):310–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li R, Wan L, Zhang X, Liu W, Rong M, Li X, et al. Effect of a neodymium-doped yttrium aluminium garnet laser on the physicochemical properties of contaminated titanium surfaces and macrophage polarization. J Periodontal Res. 2022;57(3):533–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giannelli M, Bani D, Tani A, Pini A, Margheri M, Zecchi-Orlandini S, et al. In vitro evaluation of the effects of low-intensity Nd: YAG laser irradiation on the inflammatory reaction elicited by bacterial lipopolysaccharide adherent to titanium dental implants. J Periodontol. 2009;80(6):977–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small Weinh Bergstr Ger. 2009;5(24):2848–56.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Qi M, Sun X, Weir MD, Tay FR, Oates TW, et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019;94:627–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, et al. Cerium oxide nanoparticle-induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotoxicology. 2011;5(3):312–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pérez S, Rius-Pérez S. Macrophage polarization and reprogramming in acute inflammation: a redox perspective. Antioxidants. 2022;11(7):1394.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci. 2016;17(3):334.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br. 2007;89(5):574–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015;94:53–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakabayashi T, Ymamoto A, Kazaana A, Nakano Y, Nojiri Y, Kashiwazaki M. Antibacterial, antifungal and nematicidal activities of rare earth ions. Biol Trace Elem Res. 2016;174(2):464–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo M, Ma J, Quan X. Cytotoxicity of functionalized CeO2 nanoparticles towards Escherichia coli and adaptive response of membrane properties. Chemosphere. 2021;281: 130865.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang WJ, Zhang JX, Wen ML, Wei Y, Tang TT, Yang TT, et al. Preparation of polyvinyl alcohol/chitosan nanofibrous films incorporating graphene oxide and lanthanum chloride by electrospinning method for potential photothermal and chemical synergistic antibacterial applications in wound dressings. J Mech Behav Biomed Mater. 2023;148:106162.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Su Y, Liu Y, Liang Y, Wu S, Zhou N, et al. Antibacterial fluorescent nano-sized lanthanum-doped carbon quantum dot embedded polyvinyl alcohol for accelerated wound healing. J Colloid Interface Sci. 2022;608:973–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bassous NJ, Garcia CB, Webster TJ. A study of the chemistries, growth mechanisms, and antibacterial properties of cerium- and yttrium-containing nanoparticles. ACS Biomater Sci Eng. 2021;7(5):1787–807.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Sun Y, Li X, Fan S, Liu Y, Jiang X, et al. Bactericidal effects and accelerated wound healing using Tb4O7 nanoparticles with intrinsic oxidase-like activity. J Nanobiotechnology. 2019;17(1):54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sri Varalakshmi G, Pawar C, Selvam R, Gem Pearl W, Manikantan V, Sumohan Pillai A, et al. Nickel sulfide and dysprosium-doped nickel sulfide nanoparticles: Dysprosium-induced variation in properties, in vitro chemo-photothermal behavior, and antibacterial activity. Int J Pharm. 2023;643: 123282.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang X, Yang L, Liu P, Li X, Shen J. The photocatalytic and antibacterial activities of neodymium and iodine doped TiO2 nanoparticles. Colloids Surf B Biointerfaces. 2010;79(1):69–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aggarwal D, Kumar V, Sharma S. Effect of rare earth oxide microparticles on mechanical, corrosion, antibacterial, and hemolytic behavior of Mg-Hydroxyapatite composite for orthopedic applications: a preliminary in-vitro study. J Biomed Mater Res B Appl Biomater. 2023;111(6):1232–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Parent and nano-encapsulated ytterbium (iii) complex toward binding with biological macromolecules, in vitro cytotoxicity, cleavage and antimicrobial activity studies. RSC Adv. 2020;10(39):23002–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asadpour S, Aramesh-Boroujeni Z, Jahani S. In vitro anticancer activity of parent and nano-encapsulated samarium (iii) complex towards antimicrobial activity studies and FS-DNA/BSA binding affinity. RSC Adv. 2020;10(53):31979–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahani S, Noroozifar M, Khorasani-Motlagh M, Torkzadeh-Mahani M, Adeli-Sardou M. In vitro cytotoxicity studies of parent and nanoencapsulated Holmium-2,9-dimethyl-1,10-phenanthroline complex toward fish-salmon DNA-binding properties and antibacterial activity. J Biomol Struct Dyn. 2019;37(17):4437–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morais DS, Coelho J, Ferraz MP, Gomes PS, Fernandes MH, Hussain NS, et al. Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance and antibacterial properties for bone tissue regeneration. J Mater Chem B. 2014;2(35):5872–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivanova E, Crawford R. Antibacterial surfaces. Cham: Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-18594-1.

    Book 

    Google Scholar
     

  • Peng L, Yi L, Zhexue L, Juncheng Z, Jiaxin D, Daiwen P, et al. Study on biological effect of La 3+ on Escherichia coli by atomic force microscopy. J Inorg Biochem. 2004;98(1):68–72.

    Article 

    Google Scholar
     

  • Koch AL. The pH in the neighborhood of membranes generating a protonmotive force. J Theor Biol. 1986;120(1):73–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12(8):4271–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed. 2009;48(13):2308–12.

    Article 
    CAS 

    Google Scholar
     

  • You G, Xu Y, Wang P, Wang C, Chen J, Hou J, et al. Deciphering the effects of CeO2 nanoparticles on Escherichia coli in the presence of ferrous and sulfide ions: physicochemical transformation-induced toxicity and detoxification mechanisms. J Hazard Mater. 2021;413: 125300.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu H, Jin Y, Ge K, Jia G, Li Z, Yang X, et al. Europium-doped Gd2O3 nanotubes increase bone mineral density in vivo and promote mineralization in vitro. ACS Appl Mater Interfaces. 2017;9(7):5784–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Kang F, Gong X, Bai Y, Dai J, Zhao C, et al. Ceria nanoparticles enhance endochondral ossification–based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs via DHX15 activation. FASEB J. 2019;33(5):6378–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang X, Xiu J, Shen F, Jin S, Sun W. Repairing of subchondral defect and articular cartilage of knee joint of rabbit by gadolinium containing bio-nanocomposites. J Biomed Nanotechnol. 2021;17(8):1584–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li F, Wang M, Pi G, Lei B. Europium doped monodispersed bioactive glass nanoparticles regulate the osteogenic differentiation of human marrow mesenchymal stem cells. J Biomed Nanotechnol. 2018;14(4):756–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marycz K, Smieszek A, Targonska S, Walsh SA, Szustakiewicz K, Wiglusz RJ. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium (III) ions (nHAp/PLLA@Eu3+) composite for osteochondral defect regeneration and theranostics. Mater Sci Eng C. 2020;110: 110634.

    Article 
    CAS 

    Google Scholar
     

  • Sun Y, Sun X, Li X, Li W, Li C, Zhou Y, et al. A versatile nanocomposite based on nanoceria for antibacterial enhancement and protection from aPDT-aggravated inflammation via modulation of macrophage polarization. Biomaterials. 2021;268: 120614.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • SenGupta S, Parent CA, Bear JE. The principles of directed cell migration. Nat Rev Mol Cell Biol. 2021;22(8):529–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seetharaman S, Etienne-Manneville S. Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 2020;30(9):720–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan B, Niu H, Zhang W, Ma Y, Yuan Y, Liu C. Microporous density-mediated response of MSCs on 3D trimodal macro/micro/nano-porous scaffolds via fibronectin/integrin and FAK/MAPK signaling pathways. J Mater Chem B. 2017;5(19):3586–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogino Y, Liang R, Mendonça DBS, Mendonça G, Nagasawa M, Koyano K, et al. RhoA-mediated functions in C3H10T1/2 osteoprogenitors are substrate topography dependent. J Cell Physiol. 2016;231(3):568–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagayama K, Hanzawa T. Cell type-specific orientation and migration responses for a microgrooved surface with shallow grooves. Biomed Mater Eng. 2022;33(5):393–406.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Du Y, Jiang H, Jiang GS. Cerium promotes bone marrow stromal cells migration and osteogenic differentiation via Smad1/5/8 signaling pathway. Int J Clin Exp Pathol. 2014;7(8):5369–78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang HD, Lee JT, Koh JT, Jung HM, Lee HJ, Kwon TG. Sequential treatment with SDF-1 and BMP-2 potentiates bone formation in calvarial defects. Tissue Eng Part A. 2015;21(13–14):2125–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76(17):3323–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu B, Zhu DY, Yin JH, Xu H, Zhang CQ, Ke QF, et al. Incorporation of cerium oxide in hollow mesoporous bioglass scaffolds for enhanced bone regeneration by activating the ERK signaling pathway. Biofabrication. 2019;11(2): 025012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang J, Lv Z, Wang Y, Wang Z, Gao T, Zhang N, et al. In Vivo MRI and X-Ray bifunctional imaging of polymeric composite supplemented with GdPO4 H2O nanobundles for tracing bone implant and bone regeneration. Adv Healthc Mater. 2016;5(17):2182–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng H, Li X, Xie F, Teng L, Chen H. Dextran-coated fluorapatite nanorods doped with lanthanides in labelling and directing osteogenic differentiation of bone marrow mesenchymal stem cells. J Mater Chem B. 2014;2(23):3609–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamama K, Sen CK, Wells A. Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev. 2008;17(5):897–908.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4(1):16009.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu DD, Zhang JC, Zhang Q, Wang SX, Yang MS. TGF-β/BMP signaling pathway is involved in cerium-promoted osteogenic differentiation of mesenchymal stem cells. J Cell Biochem. 2013;114(5):1105–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh RK, Yoon DS, Mandakhbayar N, Li C, Kurian AG, Lee NH, et al. Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress. Biomaterials. 2022;288: 121732.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu DD, Ge K, Jin Y, Sun J, Wang SX, Yang MS, et al. Terbium promotes adhesion and osteogenic differentiation of mesenchymal stem cells via activation of the Smad-dependent TGF-β/BMP signaling pathway. JBIC J Biol Inorg Chem. 2014;19(6):879–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou N, Li Q, Lin X, Hu N, Liao JY, Lin LB, et al. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res. 2016;366(1):101–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, et al. A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 2020;8(1):41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu H, Zhao P, Liu J, Ke Q, Zhang C, Guo Y, et al. Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway. J Nanobiotechnology. 2018;16(1):98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takada I, Kouzmenko AP, Kato S. Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009;5(8):442–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo J, Zhu S, Tong Y, Zhang Y, Li Y, Cao L, et al. Cerium oxide nanoparticles promote osteoplastic precursor differentiation by activating the Wnt pathway. Biol Trace Elem Res. 2023;201(2):865–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim CH, Hao J, Ahn HY, Kim SW. Activation of Akt/protein kinase B mediates the protective effects of mechanical stretching against myocardial ischemia-reperfusion injury. J Vet Sci. 2012;13(3):235.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao F, Peng XY, Yang F, Ke QF, Zhu ZH, Guo YP. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Mater Sci Eng C. 2019;104: 109999.

    Article 

    Google Scholar
     

  • Ahamad N, Sun Y, Nascimento Da Conceicao V, Xavier Paul Ezhilan CR, Natarajan M, Singh BB. Differential activation of Ca2+ influx channels modulate stem cell potency, their proliferation/viability and tissue regeneration. NPJ Regen Med. 2021;6(1):67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Yuan L, Huang J, Zhang TL, Wang K. Lanthanum enhances in vitro osteoblast differentiation via pertussis toxin-sensitive gi protein and ERK signaling pathway. J Cell Biochem. 2008;105(5):1307–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carrillo-López N, Fernández-Martín JL, Alvarez-Hernández D, González-Suárez I, Castro-Santos P, Román-García P, et al. Lanthanum activates calcium-sensing receptor and enhances sensitivity to calcium. Nephrol Dial Transplant. 2010;25(9):2930–7.

    Article 
    PubMed 

    Google Scholar
     

  • Wang P, Hao L, Wang Z, Wang Y, Guo M, Zhang P. Gadolinium-doped BTO-functionalized nanocomposites with enhanced MRI and X-ray dual imaging to simulate the electrical properties of bone. ACS Appl Mater Interfaces. 2020;12(44):49464–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(3):S131–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai KS, Kao SY, Wang CY, Wang YJ, Wang JP, Hung SC. Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. J Biomed Mater Res A. 2010;94A:673.

    Article 
    CAS 

    Google Scholar
     

  • Moon Y, Patel M, Um S, Lee HJ, Park S, Park SB, et al. Folic acid pretreatment and its sustained delivery for chondrogenic differentiation of MSCs. J Controll Release. 2022;343:118–30.

    Article 
    CAS 

    Google Scholar
     

  • Evans CH, Ridella JD. Inhibition, by lanthanides, of neutral proteinases secreted by human, rheumatoid synovium. Eur J Biochem. 1985;151(1):29–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijayan V, Sreekumar S, Singh F, Govindarajan D, Lakra R, Korrapati PS, et al. Praseodymium–cobaltite-reinforced collagen as biomimetic scaffolds for angiogenesis and stem cell differentiation for cutaneous wound healing. ACS Appl Bio Mater. 2019;2(8):3458–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E, et al. Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA. 2007;104(21):8691–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans CH, Drouven BJ. The promotion of collagen polymerization by lanthanide and calcium ions. Biochem J. 1983;213(3):751–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inbasekar C, Fathima NN. Collagen stabilization using ionic liquid functionalised cerium oxide nanoparticle. Int J Biol Macromol. 2020;147:24–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin X, Zhao L, Kang SG, Pan J, Song Y, Zhang M, et al. Impacts of fullerene derivatives on regulating the structure and assembly of collagen molecules. Nanoscale. 2013;5(16):7341.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vijayan V, Sreekumar S, Singh F, Srivatsan KV, Lakra R, Sai KP, et al. Nanotized praseodymium oxide collagen 3-D pro-vasculogenic biomatrix for soft tissue engineering. Nanomedicine Nanotechnol Biol Med. 2021;33: 102364.

    Article 
    CAS 

    Google Scholar
     

  • Li J, Liang J, Wu L, Xu Y, Xiao C, Yang X, et al. CYT387, a JAK-specific inhibitor impedes osteoclast activity and oophorectomy-induced osteoporosis via modulating RANKL and ROS signaling pathways. Front Pharmacol. 2022;13: 829862.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou C, Li J, He J, Luo F, Yu T, Dai Q, et al. Bone-targeted pH-responsive cerium nanoparticles for anabolic therapy in osteoporosis. Bioact Mater. 2021;6(12):4697–706.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan K, Mei J, Shao D, Zhou F, Qiao H, Liang Y, et al. Cerium oxide nanoparticles regulate osteoclast differentiation bidirectionally by modulating the cellular production of reactive oxygen species. Int J Nanomedicine. 2020;15:6355–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao Y, Cai X, Ren F, Ye Y, Wang F, Zheng C, et al. The macrophage-osteoclast axis in osteoimmunity and osteo-related diseases. Front Immunol. 2021;12: 664871.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone. 2022;164: 116538.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovács B, Vajda E, Nagy EE. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci. 2019;20(18):4653.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi J, Choi SY, Lee SY, Lee JY, Kim HS, Lee SY, et al. Caffeine enhances osteoclast differentiation and maturation through p38 MAP kinase/Mitf and DC-STAMP/CtsK and TRAP pathway. Cell Signal. 2013;25(5):1222–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast–osteoclast interactions. Connect Tissue Res. 2018;59(2):99–107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu XL, Zhang CJ, Shi JJ, Ke QF, Ge YW, Zhu ZA, et al. Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration via OPG/RANKL signaling pathway. J Nanobiotechnology. 2023;21(1):259.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yashima Y, Kaku M, Yamamoto T, Izumino J, Kagawa H, Ikeda K, et al. Effect of continuous compressive force on the expression of RANKL, OPG, and VEGF in osteocytes. Biomed Res. 2020;41(2):91–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu H, Xu G, Li YP. Atp6v0d2 is an essential component of the osteoclast-specific proton pump that mediates extracellular acidification in bone resorption. J Bone Miner Res. 2009;24(5):871–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda H, Kowada T, Kikuta J, Furuya M, Shirazaki M, Mizukami S, et al. Real-time intravital imaging of pH variation associated with osteoclast activity. Nat Chem Biol. 2016;12(8):579–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madreiter-Sokolowski CT, Thomas C, Ristow M. Interrelation between ROS and Ca2+ in aging and age-related diseases. Redox Biol. 2020;36: 101678.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palumbo CT, Zivkovic I, Scopelliti R, Mazzanti M. Molecular complex of Tb in the +4 oxidation state. J Am Chem Soc. 2019;141(25):9827–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, Chen B, Wang W, Zhang X, Hu T, He Y, et al. Strontium released bi-lineage scaffolds with immunomodulatory properties induce a pro-regenerative environment for osteochondral regeneration. Mater Sci Eng C. 2019;103: 109833.

    Article 
    CAS 

    Google Scholar
     

  • Sun Y, Wan B, Wang R, Zhang B, Luo P, Wang D, et al. Mechanical stimulation on mesenchymal stem cells and surrounding microenvironments in bone regeneration: regulations and applications. Front Cell Dev Biol. 2022;10: 808303.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Liu Y, Sun B, Li H, Dong J, Zhang L, et al. Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation. Small. 2014;10(12):2362–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi M, Xia L, Chen Z, Lv F, Zhu H, Wei F, et al. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Biomaterials. 2017;144:176–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan J, Feng G, Yang Y, Zhao X, Ma L, Guo H, et al. Nintedanib ameliorates osteoarthritis in mice by inhibiting synovial inflammation and fibrosis caused by M1 polarization of synovial macrophages via the MAPK/PI3K-AKT pathway. FASEB J. 2023;37(10):23177.

    Article 

    Google Scholar
     

  • Zhang J, Wu Q, Yin C, Jia X, Zhao Z, Zhang X, et al. Sustained calcium ion release from bioceramics promotes CaSR-mediated M2 macrophage polarization for osteoinduction. J Leukoc Biol. 2021;110(3):485–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Zhang G, Wu J, Zhang Y, Liu J, Luo H, et al. Insights into the angiogenic effects of nanomaterials: mechanisms involved and potential applications. J Nanobiotechnology. 2020;18(1):9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rnjak-Kovacina J, Weiss AS. Increasing the pore size of electrospun scaffolds. Tissue Eng Part B Rev. 2011;17(5):365–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansel CS, Crowder SW, Cooper S, Gopal S, da João Pardelha Cruz M, de Martins Oliveira L, et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano. 2019;13(3):2913–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuhrmann DC, Brüne B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017;12:208–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TXT, et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials. 2012;33(31):7746–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang J, Li J, He J, Tang X, Dou C, Cao Z, et al. Cerium oxide nanoparticle modified scaffold interface enhances vascularization of bone grafts by activating calcium channel of mesenchymal stem cells. ACS Appl Mater Interfaces. 2016;8(7):4489–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim KH, Kim D, Park JY, Jung HJ, Cho YH, Kim HK, et al. NNC 55–0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. J Mol Med. 2015;93(5):499–509.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan G, Nanduri J, Khan S, Semenza GL, Prabhakar NR. Induction of HIF-1α expression by intermittent hypoxia: Involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008;217(3):674–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oda S, Oda T, Takabuchi S, Nishi K, Wakamatsu T, Tanaka T, et al. The calcium channel blocker cilnidipine selectively suppresses hypoxia-inducible factor 1 activity in vascular cells. Eur J Pharmacol. 2009;606(1–3):130–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patra CR, Kim JH, Pramanik K, d’Uscio LV, Patra S, Pal K, et al. Reactive oxygen species driven angiogenesis by inorganic nanorods. Nano Lett. 2011;11(11):4932–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao H, Osborne OJ, Lin S, Ji Z, Damoiseux R, Wang Y, et al. Lanthanide hydroxide nanoparticles induce angiogenesis via ROS-sensitive signaling. Small. 2016;12(32):4404–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duraipandy N, Syamala KM. Effects of structural distinction in neodymium nanoparticle for therapeutic application in aberrant angiogenesis. Colloids Surf B Biointerfaces. 2019;181:450–60.

    Article 

    Google Scholar
     

  • Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020;10(1):426–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Ni N, Su Y, Miao H, Tang Z, Ji Y, et al. Targeting local osteogenic and ancillary cells by mechanobiologically optimized magnesium scaffolds for orbital bone reconstruction in canines. ACS Appl Mater Interfaces. 2020;12(25):27889–904.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuckermann J, Adams RH. The endothelium–bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol. 2021;17(10):608–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Y, Wu J, Lu H, Lao W, Zhan H, Lin L, et al. Cytotoxicity and hemolysis of rare earth ions and nanoscale/bulk oxides (La, Gd, and Yb): Interaction with lipid membranes and protein corona formation. Sci Total Environ. 2023;879: 163259.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang S, Kang X, Cheng Z, Ma P, Jia Y, Lin J. Electrospinning preparation and drug delivery properties of Eu3+/Tb3+ doped mesoporous bioactive glass nanofibers. J Colloid Interface Sci. 2012;387(1):285–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Jia W, Zhou Y, Zhou H, Liu M, Li M, et al. Hyaluronic acid oligosaccharide-collagen mineralized product and aligned nanofibers with enhanced vascularization properties in bone tissue engineering. Int J Biol Macromol. 2022;206:277–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou G, Gu G, Li Y, Zhang Q, Wang W, Wang S, et al. Effects of cerium oxide nanoparticles on the proliferation, differentiation, and mineralization function of primary osteoblasts in vitro. Biol Trace Elem Res. 2013;153(1–3):411–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elias DR, Poloukhtine A, Popik V, Tsourkas A. Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine Nanotechnol Biol Med. 2013;9(2):194–201.

    Article 
    CAS 

    Google Scholar
     

  • Chen BH, Stephen IB. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol. 2018;38(7):1003–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan H, Li J, Bao G, Zhang S. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys Rev Lett. 2010;105(13): 138101.

    Article 
    PubMed 

    Google Scholar
     

  • Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, et al. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev. 2021;175: 113820.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Zhang Y, Lin C, Zhong W. Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: In vitro hydroxyapatite formation and drug delivery. Colloids Surf B Biointerfaces. 2017;160:406–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu W, Wei K, Lin Z, Wu T, Li G, Wang L. Storage and release of rare earth elements in microsphere-based scaffolds for enhancing osteogenesis. Sci Rep. 2022;12(1):6383.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadafalch Gazquez G, Chen H, Veldhuis SA, Solmaz A, Mota C, Boukamp BA, et al. Flexible yttrium-stabilized zirconia nanofibers offer bioactive cues for osteogenic differentiation of human mesenchymal stromal cells. ACS Nano. 2016;10(6):5789–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu D, Wang J, Qian KJ, Yu J, Zhu HY. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. J Zhejiang Univ-Sci B. 2020;21(11):871–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, et al. Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Funct Mater. 2010;20(10):1617–24.

    Article 
    CAS 

    Google Scholar
     

  • Mahapatra C, Singh RK, Lee JH, Jung J, Hyun JK, Kim HW. Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions. Acta Biomater. 2017;50:142–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naganuma T, Traversa E. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials. 2014;35(15):4441–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosseini M, Mozafari M. Cerium oxide nanoparticles: recent advances in tissue engineering. Materials. 2020;13(14):3072.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong X, Han Y, Zhou R, Jiang W, Zhu L, Li Y, et al. Biodegradable Zn–Dy binary alloys with high strength, ductility, cytocompatibility, and antibacterial ability for bone-implant applications. Acta Biomater. 2023;155:684–702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akram IN, Akhtar S, Khadija G, Awais MM, Latif M, Noreen A, et al. Synthesis, characterization, and biocompatibility of lanthanum titanate nanoparticles in albino mice in a sex-specific manner. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(6):1089–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwotzer D, Niehof M, Schaudien D, Kock H, Hansen T, Dasenbrock C, et al. Cerium oxide and barium sulfate nanoparticle inhalation affects gene expression in alveolar epithelial cells type II. J Nanobiotechnology. 2018;16(1):16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauro M, Crosera M, Monai M, Montini T, Fornasiero P, Bovenzi M, et al. Cerium oxide nanoparticles absorption through intact and damaged human skin. Molecules. 2019;24(20):3759.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasi S, Rezaei M, Keshavarzi B, Mina M, Ritsema C, Geissen V. Investigation of the 2018 Shiraz dust event: potential sources of metals, rare earth elements, and radionuclides; health assessment. Chemosphere. 2021;279: 130533.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Ferreira Silva M, Fontes MP, Lima MT, Cordeiro SG, Wyatt NL, Lima HN, et al. Human health risk assessment and geochemical mobility of rare earth elements in Amazon soils. Sci Total Environ. 2022;806:151191.

    Article 

    Google Scholar
     

  • Pagano G, Thomas PJ, Di Nunzio A, Trifuoggi M. Human exposures to rare earth elements: present knowledge and research prospects. Environ Res. 2019;171:493–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Wang S, Tang G, Wang Z, Wang Y, Wu Q, et al. Inflammation and accompanied disrupted hematopoiesis in adult mouse induced by rare earth element nanoparticles. Sci Total Environ. 2022;831: 155416.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao B, Wu J, Xu C, Chen Y, Xie Q, Ouyang L, et al. The accumulation and metabolism characteristics of rare earth elements in Sprague-Dawley rats. Int J Environ Res Public Health. 2020;17(4):1399.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alarifi S, Ali H, Alkahtani S, Alessia MS. Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int J Nanomedicine. 2017;12:4541–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin C, Liu G, Huang Y, Liu S, Tang B. Rare-earth nanoparticles induce depression, anxiety-like behavior, and memory impairment in mice. Food Chem Toxicol. 2021;156: 112442.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou F, Huang J, Qing F, Guo T, Ouyang S, Xie L, et al. The rare-earth yttrium induces cell apoptosis and autophagy in the male reproductive system through ROS-Ca2+-CamkII/Ampk axis. Ecotoxicol Environ Saf. 2023;263: 115262.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C, He M, Chen B, Hu B. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells. Ecotoxicol Environ Saf. 2020;203: 110951.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, et al. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano. 2012;6(6):5366–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu J, Yang J, Liu Q, Wu S, Ma H, Cai Y. Lanthanum induced primary neuronal apoptosis through mitochondrial dysfunction modulated by Ca2+ and Bcl-2 family. Biol Trace Elem Res. 2013;152(1):125–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charbgoo F, Ahmad M, Darroudi M. Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomedicine. 2017;12:1401–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Ai W, Zhai Y, Li H, Zhou K, Chen H. Effects of nano-CeO2 with different nanocrystal morphologies on cytotoxicity in HepG2 cells. Int J Environ Res Public Health. 2015;12(9):10806–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. WIREs Nanomed Nanobiotechnol. 2010;2(5):544–68.

    Article 
    CAS 

    Google Scholar
     

  • Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hoseini S, Baino F, Vatanpour M, et al. Cerium oxide nanoparticles (Nanoceria): hopes in soft tissue engineering. Molecules. 2020;25(19):4559.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar